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Abstract

In this talk we present a mechanization effort of theory of computation in the context
of undergraduate education, with a focus on decidability and computability. We introduce
a Coq library used to teach 3 sessions of a course on Formal Languages and Automata, at
the University of Massachusetts Boston. Our project includes full proofs of results from a
textbook, such as the undecidability of the halting problem and Rice’s theorem. To this
end, we present a simple and expressive calculus that allows us to capture the essence of
informal proofs of classic theorems in a mechanized setting. We discuss the assumptions
of our formalism and discuss our progress in showing the consistency of our theory.

Introduction. Formal languages and automata (FLA) is in the basis of the curriculum of
undergraduate computer science [10]. We report on an open source project written in Coq [3]
to mechanize results of classical theory of computation. The first author used this software
for 3 semesters to teach decidability, computability, and regular languages at the University of
Massachusetts Boston. Proof assistants play a central role in our lectures for three reasons.
Firstly, a proof assistant offers an interactive mechanism to allow students to step through a
proof autonomously, allowing students to independently browse every detail of a proof at their
own pace. Secondly, a proof assistant turns a logic assignment into a programming assignment,
which can be more approachable to computer science students. Thirdly, having proof scripts
that can be machine checked, lets instructors automatically grade homework assignments. Other
works that use proof assistants to aid education include [1, 9, 12].

Mechanization goals. We formalize Sipser’s Introduction to the theory of computation [10]
in Coq. Our design goal is to keep our formalism as close to the textbook as possible, which
includes having mechanized proofs that mirror the textbook proofs. Another important design
goal is that proofs should only include basic Coq capabilities. The proofs need to be com-
prehensible to an undergraduate student with rudimentary knowledge of Coq (case analysis,
induction, polymorphism, and logical connectives). Further, we include alternative proofs of
some theorems when there’s a pedagogical benefit, e.g., the proof is simpler, or the intuition is
easier to explain. Our approach contrasts many published works on mechanized computability
theory [13, 17, 8, 2, 15, 4, 11].

Decidability results. Our mechanization includes the main results of [16, Chapters 4 and
5], on decidability and reducibility. One of our contributions is formalizing Sipser’s “high-level
descriptions,” which is essentially pseudo-code to describe a Turing machine. For instance,
consider Theorem 4.11 of [16, Chapter 4], where TM denotes a Turing machine, ranged over by
meta-variable M, inputs are ranged over by i. A language, ranged over by A is a set of inputs.
Language A is decidable if there exists a Turing machine M that decides A, i.e., M accepts 1 if,
and only if, i € A; and M rejects ¢ if, and only if, i ¢ A. Additionally, (-) denotes a reasonable
encoding of one or more objects into a string, e.g., (M, i) encodes a Turing machine M and an
input ¢ into an input, and (M) encodes a Turing machine M into an input.
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Theorem 4.11 ([16, pp. 207]). Apy = {(M,4) | M is a TM and M accepts i} is undecidable.

The proof of Theorem 4.11 includes the following high-level description of a Turing ma-
chine D, parameterized by a Turing machine H which decides Arpr: “The following is the
description of D: (1) Run H on input (M, (M)). (2) Output the opposite of what H outputs.
That is, if H accepts, reject; and, if H rejects, accept.”

We formalize such high-level description as:

Definition D (H:input — prog): input — prog :=
fun (i:input) = (* On input i = <M> *)
mlet b « H <[ decode_mach i, i |> in (* Step 1 *)

if b then Ret false else Ret true (* Step 2 *)

where input 1 = (M) and decode mach i = M. We formalize high-level descriptions next. We
first give the syntax of high-level descriptions p.

p u=mletx=pinp | call M i | returnbd where b € {T, L}
Next, we introduce a big-step operational semantics in terms of high-level descriptions:

M accepts ¢ M rejects 1 plb Pl =0 ¥
return b | b call M i T call M | L mlet x =pinp | ¥

We then define that a Turing machine M computes a Turing function f of type input — prog
if for any input ¢ we have call M i} b if and only if f(i) | b.

Assumptions. Our theory is parameterized by an input type, a type of Turing machines, and
the semantics of Turing machines. We assume that their execution is deterministic and that for
any machine M and an input ¢ we can obtain M accepts i, or M rejects i, or neither. Centrally,
we assume that for any Turing function f there exists a Turing machine M computing f. This
assumption is consistent since we work in Coq, where every definable function is computable.

Results. To mechanize the proof of Theorem 4.11 we assume a machine M’ deciding A7y,
i.e., computing a Turing function H. Now using the assumption that every Turing function is
computable on D(H) yields M such that call M i |} true <> call M i |} false, a contradiction.

Our further main results include: A is decidable if, and only if A is recognizable and co-
recognizable (i.e., its complement is recognizable) (Theorem 4.22); the complement of Ary, is
not recognizable (Corollary 4.23); HALT 1y = {(M, i) | M accepts or rejects ¢} is undecidable
(Theorem 5.1); Erpy = {(M) | L(M) = 0} is undecidable (Theorem 5.2), where L(M) =
{i | M accepts i}; EQry = {(My, M) | L(M;) = L(Ms)} is neither recognizable nor co-
recognizable (Theorem 5.30); EQ 7, is undecidable (Theorem 5.4); Rice’s Theorem (Problem
5.28). Our proofs of these results are all constructive. Our project contains results on languages
and regular languages, e.g., the pumping lemma for regular language inspired by the proof
in [14].

Future work. To show the consistency of our axioms, we are working on instantiating our
theory with a mechanized formalism of computability from the Coq library of undecidability
proofs [7] equivalent to Turing machines [6]. Consistency of the central assumptions then
follows from the consistency of the axiom CT in type theory [5]. We are also investigating
multiple grading approaches in classes that use proof assistants, e.g., multiple-choice questions,
automatic questions about students submissions.
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