
Veri�cation of GPU Programs: Evaluation
Challenges

Hannah Zicarelli and Tiago Cogumbreiro

Presenter: Hannah Zicarelli

April 3, 2022

PLACES

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 1 / 22

Today's talk

Motivation

Our evaluation framework

Conclusion

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 2 / 22

Motivation

3 / 22

Static analysis of GPU programs
What is this talk about?

The previous talk (Liew et al.) presented static analysis of GPU data-races

In this talk we discuss the challenge of large comparative studies in this area

We focus on NVidia's CUDA: C++ programs that run on GPU hardware

In this talk we will refer to GPU programs as kernels

Are there any special requirements for static analysis of kernels?

Static analysis of kernels requires source code annotations

What veri�ers are we comparing?

Static analysis: Faial (our tool), GPUVerify, PUG

Also, symbolic execution: GKLEE, SESA

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 4 / 22

Original program source:

__global__
void saxpy(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

Source annotations for PUG:

#include "my_cutil.h"
assume(blockDim.x �� 16);
assume(blockDim.y �� 16);
assume(gridDim.x �� 64);
assume(gridDim.y �� 64);

__global__
void saxpy_kernel(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i]; }

Source annotations: static analysis

PUG requires that a special C header (my_cutil.h) is included

Static analysis requires problem size (e.g., number of threads) given as assumptions

This is the case as SMT solvers cannot handle multiplication of symbolic variables

PUG expects �le extension to be .c rather than the normal .cu
PUG requires kernel function to end with string kernel

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 5 / 22

Source annotations: static analysis

$ gpuverify --no-inline --only-intra-group --blockDim=16 --gridDim=64
 --no-benign-tolerance saxpy-gpuverify.cu

GPUVerify can accept the number of threads via command-line arguments

When employing such command-line arguments, GPUVerify can verify some trivial
kernels without additional source annotations

This is only the case the only annotation needed is the number of threads

Next, we will discuss complex kernels requiring additional annotation

We implemented our veri�cation tool (Faial) to use GPUVerify style annotations

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 6 / 22

Source annotations for GPUVerify:
__global__ void kernel (float* odata, float* idata, int width,
 int height, int nreps) {

 __requires(width �� 1024);
 __requires(height �� 1024);
 __requires(width > gridDim.y);
 __requires(height > gridDim.x);

 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
 int index = xIndex + width*yIndex;

 for (int r=0; r < nreps; r++) {
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 odata[index+i*width] = idata[index+i*width];
 }
 }
}

Source annotations for PUG:
#include "my_cutil.h"

__global__ void kernel (float* odata, float* idata, int width,
 int height, int nreps) {

 assume(width �� 1024);
 assume(height �� 1024);
 assume(width > gridDim.y);
 assume(height > gridDim.x);

 assume(blockDim.x �� 16);
 assume(blockDim.y �� 16);
 assume(gridDim.x �� 64);
 assume(gridDim.y �� 64);

 int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
 int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
 int index = xIndex + width*yIndex;

 for (int r=0; r < nreps; r++) {
 for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
 odata[index+i*width] = idata[index+i*width]; } } }

Source annotations: static analysis

Additional code annotations are often needed to constrain analysis

These must be source annotations, and annotation syntax differs by veri�cation tool

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 7 / 22

Source annotations: static analysis
Annotation GPUVerify PUG

Preconditions __requires(...); assume(...);
File extension .cu .c

Number of threads command-line or source source annotation

Required headers "my_cutil.h"

Additionally, PUG places further restrictions on the C++ kernel source code:

No C++ templates

No classes

All loops must be for loops and face additional restrictions

GPUVerify and PUG require differing source annotations!

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 8 / 22

Source annotations for GKLEE:

__global__
void saxpy(int n, float a, float *x, float *y) {

 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i]; }

int main () {
 int n;
 klee_make_symbolic(&n, sizeof(int), "n");
 float a;
 klee_make_symbolic(&a, sizeof(float), "a");
 float *x;
 cudaMalloc((void**)&x, 1024 * sizeof(float));
 float *y;
 cudaMalloc((void**)&y, 1024 * sizeof(float));
 dim3 grid_dim(16);
 dim3 block_dim(64);
 saxpy�<� grid_dim, block_dim �>�(n, a, x, y);
 return 0;
}

Symbolic execution annotations:

A main function is required to be an
execution entry point

Each kernel parameter must be
initialized (symbolically)

The problem size (e.g., number of
threads) must be speci�ed

Finally, the main function must invoke
the kernel function

Note that this main function speci�c to
symbolic evaluation

This main function won't work for
running the kernel on a GPU

Source annotations: symbolic execution

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 9 / 22

Related work
Studies for the following veri�ers compare two or fewer total veri�ers:

2 for GPUVerify (2012 by Betts et al.)

1 for PUG (2012 by Li and Gopalakrishnan)

2 for GKLEE (2012 by Guodong et al.)

2 for SESA (2014 by Li, Li, and Gopalakrishnan)

Studies for the following veri�ers have limited average lines of code (LoC) analyzed:

13 avg. LoC for ESBMC-GPU (2016 by Pereira et al.)

16 avg. LoC for Simulee (2020 by Wu et al.)

We survived existing published studies: they lack tool diversity and depth!

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 10 / 22

The challenge of large evaluations
Each veri�er requires tool-spesi�c code annotations

These code annotations are incompatable across veri�ers

Dataset must maintain variations of each program for each veri�er

This maintance would be highly labor intensive for researchers!

Source annotations are an impedement to large evaluations

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 11 / 22

Our evaluation framework

12 / 22

grid_dim = [64]
block_dim = [16]

pass = true

body = '''
 int i = blockIdx.x*blockDim.x
 + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
'''

scalars = [{n = "int"}, {a = "float"}]
arrays = [{x = "float"}, {y = "float"}]

Our tool-agnostic format can specify:

Number of threads (block_dim, grid_dim)

C headers to be included

Kernel function parameters, by type

Wether the test passes (e.g., data-race
freedom, barrier divergence, etc)

Preamble code

Preconditions (e.g., invariants)

The body of the kernel function

A tool-agnostic kernel format

We use TOML (Tom's Obvious Minimal
Language) to structure this data

Why TOML? TOML libraries exist to be used with most programming languages

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 13 / 22

Automation
We have built an ecosystem of tools on top of this tool-agnostic kernel format. Examples
include:

Veri�er-speci�c kernel generation

Running multiple veri�ers on a kernel

Gathering metrics on code features for each kernel

Conversion from CUDA to tool-agnostic kernel format

We will cover each of these tasks in the following slides

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 14 / 22

Veri�er-speci�c kernel generation
Snippet from the GPUVerify template that generates preconditions:

{% if pre | length > 0 %}
 /* kernel pre-conditions */
 {% for p in pre %}
 __requires({{ p }});
 {% endfor %}
{% endif %}

We employ the Jinja template engine and Python to generate programs

Jinja (programming language agnostic) is commonly used to generate HTML web pages

We developed a tool kernel-gen.py to generate kernels:

Input is the tool-agnostic format

A command-line argument speci�es the format of the output program

Output is a CUDA kernel formatted for the speci�ed veri�er

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 15 / 22

Running multiple veri�ers on a kernel

$ test-tools.py saxpy.toml
RUN timeout 60 faial --parse-gv-args saxpy-faial.cu
RUN timeout 60 gpuverify --no-inline --only-intra-group --blockDim=16 --gridDim=64
 --no-benign-tolerance saxpy-gpuverify.cu
RUN timeout 60 pug saxpy-pug.c
 status time memory data_races tool
-------- ------ -------- ------------ ---------
 0 0.18 48.418 drf faial
 0 1.34 37.5859 drf gpuverify
 0 0.05 50.6484 drf pug

Some veri�ers require metadata stored in the tool-agnostic kernel format

For example, recall that GPUVerify needs the number of threads

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 16 / 22

Gathering metrics on code features
We extend our tool-agnostic kernel format to store metadata on code features of the
dataset. The following is an example of such metadata:

max_sync_nesting = 1
sync_loop_count = 1
unsync_loop_count = 1
loop_count = 2
write_count = 3
read_count = 4
if_count = 0
sync_count = 2
line_count = 71

This is possible as the TOML format is easily extensible

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 17 / 22

Conversion from CUDA to agnostic format
Much of our evaluation is based on on GPUVerify's CAV 2014 dataset

This dataset of 227 CUDA kernels comes with GPUVerify source annotations

We employed a script to convert this CUDA dataset to our tool-agnostic format

The script (~150 lines of Python) consists of rudimentary text processing

This conversion was mostly-automated, handling 65% of the dataset

Takeaway: a little automation saves a lot of time!

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 18 / 22

This benchmarking infrastructure enabled multiple
experiments:

A dataset of 227 CUDA kernels, 3 static veri�er,
including kernels with up to 850 lines of code

And an additional 250 synthetic kernels, 5 static
and symbolic veri�ers

To our knowledge, this is the largest published
experimental evaluation of GPU veri�ers to date

Results: CAV 2021 evaluation

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 19 / 22

Conclusion

20 / 22

Future challenges
Support for numeric and symbolic problems

Currently, we check veri�er output for boolean correctness tests

In the future, we are interested in parsing output for numeric and symbolic output

Weakening and strengthening preconditions

We are interested in which preconditions affect certain properties

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 21 / 22

What we learned
Source annotations are an impediment to large evaluations

Templates aid the handling of differing annotations via program generation

A little automation goes a long way

With templates and automation in place, larger evaluations are feasible.

Veri�cation of GPU Programs: Evaluation Challenges ☼ Hannah Zicarelli and Tiago Cogumbreiro 22 / 22

