
Provable GPU Data-Races in Static Race Detection

Characterizing True Data-Race Alarms in a Behavioral Type

PLACES’22, April 3rd 2022

Dennis Liew, Tiago Cogumbreiro, Julien Lange

2

Introduction

Overview

BabyCUDA: Syntax

BabyCUDA: Type System

Conclusion

BabyCUDA: Semantics

3

Introduction

Introduction

BabyCUDA: Syntax

BabyCUDA: Type System

Conclusion

BabyCUDA: Semantics

4

The CUDA Programming Model

CUDA is an extension of C, handling parallel code.

CUDA follows the Single-Instruction-Multiple-Threads (SIMT) model, all threads
execute a copy of the GPU program (kernel).

*CUDA’s programming model is similar to OpenCL.

Single-Precision A·X Plus Y (saxpy) is the “Hello World” of CUDA, our running example

5

Data-races in CUDA

1st thread (i=0)

 Shared Array y

2nd thread (i=1)

Reads from 0
Writes to 1

Data-races : When two or more threads access the same memory location, and at least
one is a Write; causing unwanted nondeterminism.

Reads from 1
Writes to 2

6

Faial [CAV’21] : DRF Checker

[CAV’21]: Tiago Cogumbreiro, Julien Lange, Dennis Liew & Hannah Zicarelli : Checking Data-Race Freedom
of GPU Kernels, Compositionally.

*Faial is sound but incomplete.

7

Theory Behind Faial [CAV’21]

Well-formed
check

Barrier aligning Barrier splitting Quantification SMT Backend Inference

Source Target

● a compositional analysis for DRF, based on memory access protocols
(MAPs).

● protocols are behavioral types that codify the way threads interact over
shared memory.

● mechanized proofs of our theoretical results.

● Faial outperforms the state-of- the-art, (verify at least 1.42× more real-
world kernels).

8

False Alarms in Faial

Over approximation

CUDA Behavioral Type implemented in Faial

Over approximates by ignoring array contents (what is being read from / written to arrays).

This over approximation in MAPs is what makes Faial scalable.

The downsides are False Alarms caused by data-dependent kernels.

readindex is actually data-race free (DRF) but Faial reports it as Racy.

9

False Alarms in Static Analysis

Static Analyzers suffer from false positives (false alarms)

[CAV’21] evaluated several static analyzers on readindex, and most report a
false alarm.

[ICSE’13], [CACM’18] show that false alarms hinder the adoption and use of
static analyzers in industrial settings.

[ICSE’13]: Brittany Johnson, Yoonki Song, Emerson Murphy-Hill & Robert Bowdidge : Why Don’t Soft-
ware Developers Use Static Analysis Tools to Find Bugs?

[CACM’18]: Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon & Ciera Jaspan : Lessons
from Building Static Analysis Tools at Google.

10

Can we prove certain alarms as True Alarms?

Unknown Provably True Alarm

11

Our Approach

Solving the problem of False Alarms:

Specify a core language (BabyCUDA) and a behavioral type system, for
which the analysis of Faial is sound and complete for well-typed programs.

Faial

Racy ?

DRF

Behavioral
Type

system
Unknown (data-
dependency)

True RacyCUDA

12

Theoretical Pipeline

Well-formed
check

Barrier aligning Barrier splitting Quantification SMT Backend

Faial

 Inference

*not formalized in [CAV’21]

We are now formalizing it through BabyCUDA, representative subset of CUDA.

Source Target

13

Introduction

BabyCUDA: Syntax

BabyCUDA: Type System

Conclusion

BabyCUDA: Semantics

14

BabyCUDA: Syntax

Introduction

BabyCUDA: Syntax

BabyCUDA: Type System

Conclusion

BabyCUDA: Semantics

15

Source Syntax: BabyCUDA

Simplified saxpy in BabyCUDASimplified saxpy in CUDA

16

Target Syntax: Memory Access Protocols (Faial)

Simplified saxpy as a Memory Access
Protocol (Faial)Simplified saxpy in BabyCUDA

Following, we show how to infer a Memory Access Protocol
from a BabyCUDA program

17

BabyCUDA: Operational
Semantics

Introduction

BabyCUDA: Syntax

BabyCUDA: Type System

Conclusion

BabyCUDA: Semantics

18

BabyCUDA: Operational Semantics

 Program Output AccessesInput Accesses

History &
Thread ID

19

BabyCUDA: Operational Semantics

20

BabyCUDA: Parallel semantics

● For every thread, evaluate the BabyCUDA program,
b yielding accesses A.

● Replace tid with their unique thread identifier i.

● Merge all i:A into the current phase.

E
v
a
lu

a
te

M
e
rg

e

21

BabyCUDA: Type System

Introduction

BabyCUDA: Syntax

BabyCUDA: Type System

Conclusion

BabyCUDA: Semantics

22

saxpy and saxpyracy are Well-typed

Program
(BabyCUDA)

Behavioral type
(MAPs)

Variable Set

Program
(BabyCUDA)

Behavioral type
(MAPs)

Variable Set

 Program Behavioral typeVariable Set

Well-typed + Racy = True Race

23

BabyCUDA: Behavioral type system

24

saxpyracy well-typed derivation

25

readindex ill-typed derivation

26

BabyCUDA: Main result

Well-typed BabyCUDA programs are analyzed correctly
(soundly and completely) by Faial.

Memory Access Protocols of well-typed programs preserve and reflect
the concurrent accesses of the source program.

27

Conclusion

Introduction

BabyCUDA: Syntax

BabyCUDA: Type System

Conclusion

BabyCUDA: Semantics

28

Related Work

[POPL’19]: Nikos Gorogiannis, Peter W. O’Hearn & Ilya Sergey (2019): A True Positives Theorem for a Static Race
Detector.

[POPL’15]: Roberto Giacobazzi, Francesco Logozzo & Francesco Ranzato (2015): Analyzing Program Analyses.

[POPL’19] introduce the first DRF static analysis for multithreaded
programs that is sound and complete, for a subset of all programs.

*generally inapplicable (or irrelevant) to GPU programming

[POPL’15] develop a deductive system to prove completeness of program
analyses over an abstract domain.

29

Conclusion and Future Work

Introduced a behavioral type system that characterizes true data-races
in Memory Access Protocols (Faial).

Main result guarantees that Faial’s analysis are sound and complete.

Future work include:
completing the Coq formalization and implementation.

having an empirical evaluation of the type system’s applicability.

END
BabyCUDA

E
v
a
lu

a
te

M
e
rg

e

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

