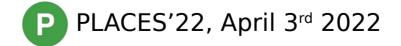
Provable GPU Data-Races in Static Race Detection

Characterizing True Data-Race Alarms in a Behavioral Type

Dennis Liew, Tiago Cogumbreiro, Julien Lange



Overview

Introduction

BabyCUDA: Syntax

BabyCUDA: Semantics

BabyCUDA: Type System

Conclusion

Introduction

Introduction

BabyCUDA: Syntax

BabyCUDA: Semantics

BabyCUDA: Type System

Conclusion

The CUDA Programming Model

CUDA is an extension of C, handling parallel code.

CUDA follows the Single-Instruction-Multiple-Threads (SIMT) model, all threads execute a copy of the GPU program (kernel).

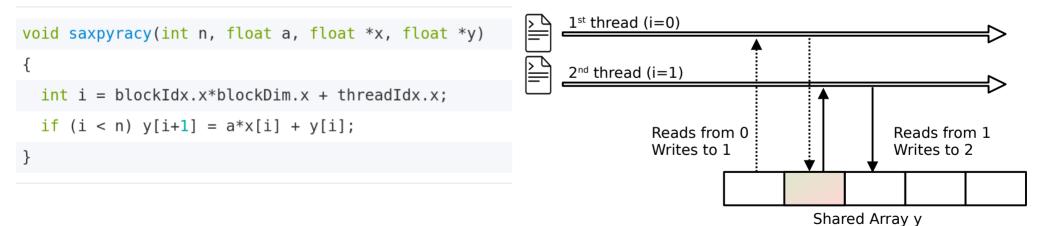
*CUDA's programming model is similar to OpenCL.

```
void saxpy(int n, float a, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}</pre>
```

Single-Precision A·X Plus Y (saxpy) is the "Hello World" of CUDA, our running example

Data-races in CUDA

Data-races : When two or more threads access the same memory location, and at least one is a Write; causing unwanted nondeterminism.



Faial [CAV'21] : DRF Checker

```
verify@7744c486fb5e:/artifact/source/faial/tutorial$ faial saxpy.cu
Program is data-race free!
```

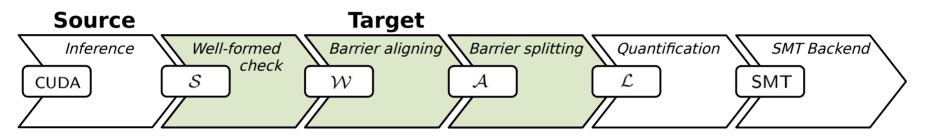
```
void saxpy(int n, float a, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}</pre>
```

*Faial is **sound but incomplete.**

<pre>verify@7744c486fb5e:/artifact/source/faial/tutorial\$ faial saxpyracy.cu DATA RACE ERROR ***</pre>							
Array: y[1] T1 mode: W T2 mode: R							
Globals	<pre>void saxpyracy(int n, float a, float *x, float *y) Value {</pre>						
blockDim.x	<pre>2 int i = blockIdx.x*blockDim.x + threadIdx.x;</pre>						
blockIdx.x	<pre>0 if (i < n) y[i+1] = a*x[i] + y[i];</pre>						
gridDim.x	1						
n	2						
Locals	T1 T2						
threadIdx.x	0 1						

[CAV'21]: Tiago Cogumbreiro, Julien Lange, Dennis Liew & Hannah Zicarelli : Checking Data-Race Freedom of GPU Kernels, Compositionally.

Theory Behind Faial [CAV'21]



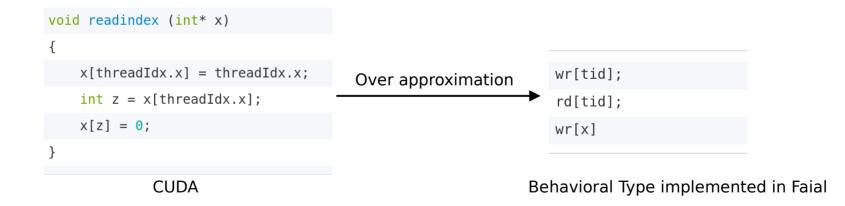
- a compositional analysis for DRF, based on memory access protocols (MAPs).
- protocols are **behavioral types** that codify the way threads interact over shared memory.
- mechanized proofs of our theoretical results.
- Faial outperforms the state-of- the-art, (verify at least 1.42× more realworld kernels).

False Alarms in Faial

Over approximates by ignoring array contents (what is being read from / written to arrays).

This over approximation in MAPs is what makes Faial scalable.

The downsides are False Alarms caused by data-dependent kernels.



readindex is actually data-race free (DRF) but Faial reports it as Racy.

False Alarms in Static Analysis

Static Analyzers suffer from false positives (false alarms)

[CAV'21] evaluated several static analyzers on *readindex*, and most report a false alarm.

[ICSE'13], [CACM'18] show that false alarms hinder the adoption and use of static analyzers in industrial settings.

[ICSE'13]: Brittany Johnson, Yoonki Song, Emerson Murphy-Hill & Robert Bowdidge : Why Don't Software Developers Use Static Analysis Tools to Find Bugs?

[CACM'18]: Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon & Ciera Jaspan : Lessons from Building Static Analysis Tools at Google.

Can we prove certain alarms as True Alarms?

faial read-	index.cu E ERROR ***	ifact/datasets/correctness/faial/synthetic\$			/artifact/source/faial/tutorial\$ faial saxpyracy.cu
		<pre>void readindex (int* x)</pre>	Globals	Value	<pre>void saxpyracy(int n, float a, float *x, float *y)</pre>
Globals	Value	{	blockDim.x	2	{
blockDim.x	2	<pre>x[threadIdx.x] = threadIdx.x;</pre>	blockIdx.x	 0	<pre>int i = blockIdx.x*blockDim.x + threadIdx.x;</pre>
Z	0	<pre>int z = x[threadIdx.x];</pre>	 gridDim.x		if $(i < n) y[i+1] = a*x[i] + y[i];$
		x[z] = 0;			}
		}	n 	2	
Locals	T1 T2				
threadIdx.x	1 0 		Locals	T1 T2	-

Unknown

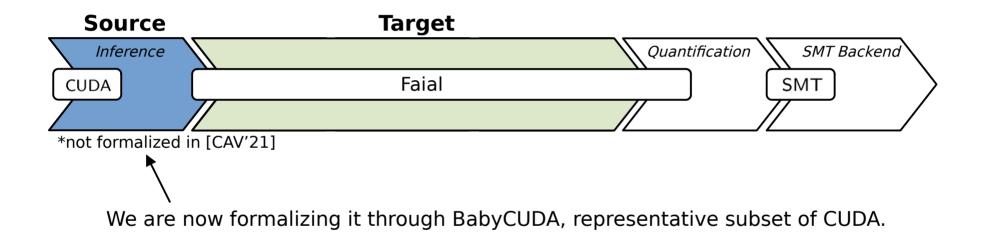
Provably True Alarm

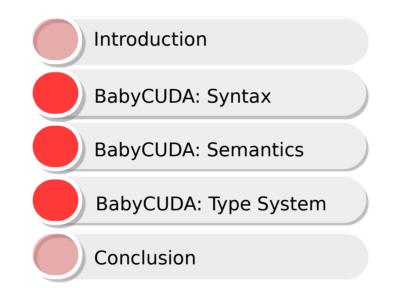
Our Approach

Solving the problem of **False Alarms**:

Specify a core language (BabyCUDA) and a behavioral type system, for which the analysis of Faial is sound and complete for well-typed programs.

Theoretical Pipeline





BabyCUDA: Syntax

Introduction

BabyCUDA: Syntax

BabyCUDA: Semantics

BabyCUDA: Type System

Conclusion

Source Syntax: BabyCUDA

$$\mathcal{B} \ni b ::= A[n] := n \mid \text{let } x = A[n] \text{ in } b$$
$$\mid b; b \mid \text{if } c \{b\} \text{ else } \{b\}$$
$$\mid \text{for } x \in n..m \{b\} \mid \text{skip}$$

Target Syntax: Memory Access Protocols (Faial)

$\mathcal{U} \ni \quad u \quad ::= \quad \text{skip} \mid o[i] \mid u; u \mid \text{if } c \{u\} \text{ else } \{u\} \mid \text{ for } x \in n..m \{u\}$

Following, we show how to infer a Memory Access Protocol from a BabyCUDA program

Simplified saxpy in BabyCUDA	Simplified <i>saxpy as a</i> Memory Access Protocol (Faial)		
if (tid < n) { let $x = A[tid]$ in $A[tid] := x$ }	<pre>if (tid < n) { rd[tid]; wr[tid] }</pre>		
<pre>else { skip }</pre>	<pre>else { skip }</pre>		

BabyCUDA: Operational Semantics

Introduction

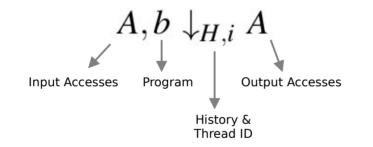
BabyCUDA: Syntax

BabyCUDA: Semantics

BabyCUDA: Type System

Conclusion

BabyCUDA: Operational Semantics



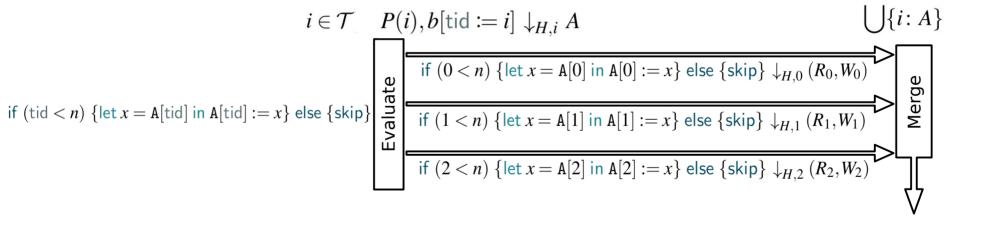
BabyCUDA: Operational Semantics

Semantics	lastwrite(j	$(H) = k$ $A, b \downarrow_{H,i} A$ $H, b \downarrow H$			
LASTWRITE-CURR $\exists i: P(i) = (R, W)$ $W(j) = k$	LASTWRITE-PREV $\forall i: P(i) = (R, W) \implies j \notin d$				
lastwrite(j, P::H) = k	lastwrite(j, P::H) = lastwrite(j, H) $lastwrite(j, [])$				
READ $n \downarrow j$ $(R \cup \{j\}, W), b[x := lastwrite(j)$	$\{i: (R,W)\}::H)]\downarrow_{Hi}B$	WRITE $n \downarrow j \qquad m \downarrow k$			
$A, \text{let } x = \mathbb{A}[n] \text{ in } b \downarrow$	/	$\overline{(R,W),\mathbb{A}[n]:=m\downarrow_{H,i}(R,W[j\mapsto k])}$			
SEQ	F-T	IF-F			
$A, b_1 \downarrow_{H,i} B B, b_2 \downarrow_{H,i} C$	$c \downarrow \texttt{true} \ A, b_1 \downarrow_{H,i} B$	$c \downarrow \texttt{false} \ \ A, b_2 \downarrow_{H,i} B$			
$A, b_1; b_2 \downarrow_{H,i} C$	A, if $c \{b_1\}$ else $\{b_2\} \downarrow_{H,i} B$	$\overline{A, \text{if } c \{b_1\} \text{ else } \{b_2\} \downarrow_{H,i} B}$			
FOR-1 FOR-2					
$(n \ge m) \downarrow \texttt{true}$ $(n < n)$	$(n) \downarrow \texttt{true} \qquad A, b[x \coloneqq n] \downarrow_{H,i}$	$B \qquad B, for^{U} \ x \in n+1m \ \{b\} \downarrow_{H,i} C$			
$\overline{A, for^{U} x \in nm \{b\} \downarrow_{H,i} A}$	$A, for^{U} x \in nm \{b\} \downarrow_{H,i} C$				
SKIP	$\frac{Q = \bigcup\{i: A \mid P(i), b[tid := i] \downarrow_{H,i} A \land i \in \mathcal{T}\}}{P::H, b \downarrow Q::H}$				
$\overline{A, skip}\downarrow_{H,i} \overline{A}$	$P::H,b\downarrow g$	Q::H			

BabyCUDA: Parallel semantics

$$\frac{Q = \bigcup\{i: A \mid P(i), b[\mathsf{tid} := i] \downarrow_{H,i} A \land i \in \mathcal{T}\}}{P::H, b \downarrow Q::H}$$

- For every thread, evaluate the BabyCUDA program, b yielding accesses A.
- Replace tid with their unique thread identifier i.
- Merge all *i:A* into the current phase.



 $\{0: (R_0, W_0), 1: (R_1, W_1), 2: (R_2, W_2)\}\$

BabyCUDA: Type System

Introduction

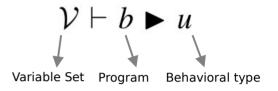
BabyCUDA: Syntax

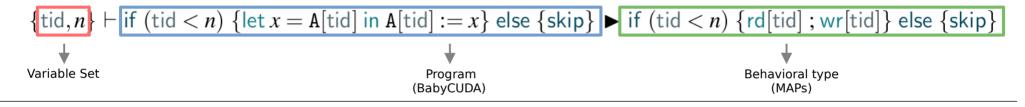
BabyCUDA: Semantics

BabyCUDA: Type System

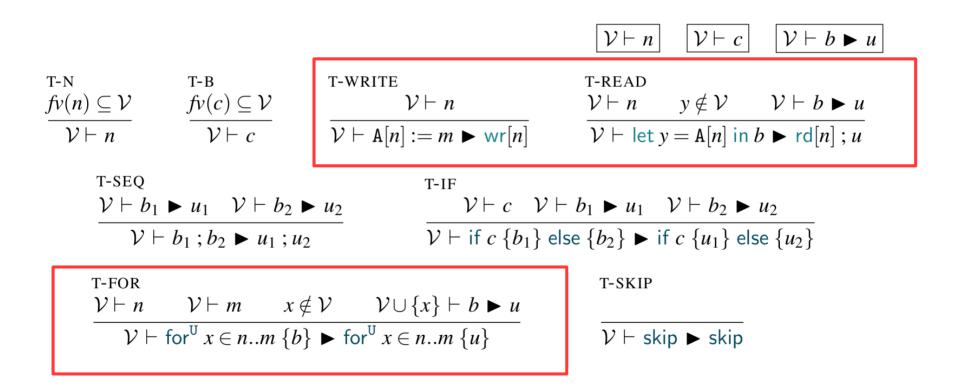
Conclusion

saxpy and saxpyracy are Well-typed





BabyCUDA: Behavioral type system

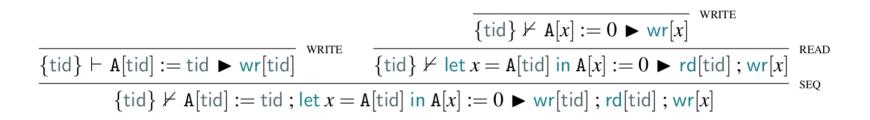


24

 $\{tia, n\} \vdash iet x = A[tia] in A[tia + 1] := x \triangleright ra[tia]; wr[tia + 1]$ $\{tia, n\} \vdash skip \triangleright skip$ $\{ \mathsf{tid}, n \} \vdash \mathsf{if} \ (\mathsf{tid} < n) \ \{ \mathsf{let} \ x = \mathsf{A}[\mathsf{tid}] \ \mathsf{in} \ \mathsf{A}[\mathsf{tid}+1] := x \} \ \mathsf{else} \ \{\mathsf{skip}\} \blacktriangleright \mathsf{if} \ (\mathsf{tid} < n) \ \{\mathsf{rd}[\mathsf{tid}] \ ; \ \mathsf{wr}[\mathsf{tid}+1] \} \ \mathsf{else} \ \{\mathsf{skip}\}$

$$\frac{1}{\{\text{tid}, n\} \vdash A[\text{tid}+1] := x \blacktriangleright wr[\text{tid}+1]} \overset{\text{WRITE}}{= x \vdash rd[\text{tid}] \cdot wr[\text{tid}+1]} \overset{\text{READ}}{= x \vdash skin} \frac{1}{\{\text{tid}, n\} \vdash skin} \overset{\text{SKIP}}{= x \vdash skin}$$

readindex ill-typed derivation



BabyCUDA: Main result

Theorem 1 (Correctness). Let $H, b \downarrow H'$ and $u \downarrow \Lambda$. If $\{tid\} \vdash b \models u$, H is DRF, then H' is DRF if, and only if, P is DRF.

Well-typed BabyCUDA programs are analyzed correctly (soundly and completely) by Faial.

Memory Access Protocols of well-typed programs preserve and reflect the concurrent accesses of the source program.

Conclusion

Introduction BabyCUDA: Syntax BabyCUDA: Semantics BabyCUDA: Type System Conclusion

Related Work

[POPL'19] introduce the first DRF static analysis for **multithreaded** programs that is sound and complete, for a subset of all programs.

*generally inapplicable (or irrelevant) to GPU programming

[POPL'15] develop a deductive system to prove completeness of program analyses over an abstract domain.

[POPL'19]: Nikos Gorogiannis, Peter W. O'Hearn & Ilya Sergey (2019): A True Positives Theorem for a Static Race Detector.

[POPL'15]: Roberto Giacobazzi, Francesco Logozzo & Francesco Ranzato (2015): Analyzing Program Analyses.

Conclusion and Future Work

Introduced a **behavioral type system** that characterizes **true data-races** in Memory Access Protocols (Faial).

Main result guarantees that Faial's analysis are sound and complete.

Future work include: completing the Coq formalization and implementation.

having an empirical evaluation of the type system's applicability.

BabyCUDA END

$$i \in \mathcal{T} \quad P(i), b[\text{tid} := i] \downarrow_{H,i} A \qquad \qquad \bigcup \{i: A\}$$

if $(\text{tid} < n) \{\text{let } x = A[\text{tid}] \text{ in } A[\text{tid}] := x\} \text{ else } \{\text{skip}\}$
if $(\text{tid} < n) \{\text{let } x = A[1] \text{ in } A[1] := x\} \text{ else } \{\text{skip}\}$
if $(\text{tid} < n) \{\text{let } x = A[2] \text{ in } A[2] := x\} \text{ else } \{\text{skip}\}$
$$[\{0: (\{0\}, \{0:0\}), 1: (\{1\}, \{1:1\}), 2: (\{2\}, \{2:2\})\}]$$

void readindex (int* x) { x[threadIdx.x] = threadIdx.x; int z = x[threadIdx.x]; x[z] = 0; }

 $\{\mathsf{tid}\} \nvDash \mathsf{A}[\mathsf{tid}] := \mathsf{tid}; \mathsf{let} x = \mathsf{A}[\mathsf{tid}] \mathsf{in} \mathsf{A}[x] := 0 \triangleright \mathsf{wr}[\mathsf{tid}]; \mathsf{rd}[\mathsf{tid}]; \mathsf{wr}[x]$