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ABSTRACT

Generating visualizations of Formal Languages and Automata (FLA)
is often a laborious and error prone task. Existing tools either offer
the ability to fully customize the appearance of the artifacts, or offer
reusability and abstraction, but do not offer both at the same time.
In this paper, we introduce a system called Gidayu for creating
mathematical diagrams of automata, of their computations, and
of their transformations. Many kinds of automata are supported:
(non)deterministic finite automata, generalized nondeterministic
finite automata, and (non)-deterministic pushdown automata. Gi-
dayu fosters experimentation and rapid prototyping, as diagrams
are generated automatically. The specification language includes
directives to fine tune the presentation of each element; and, users
can customize the visual notation used by our system. We discuss
various parameters Gidayu offers to visualize diagrams and their
importance in the instruction of FLA.

CCS CONCEPTS

• Human-centered computing → Visualization toolkits; Vi-
sualization design and evaluation methods; • Theory of com-

putation → Regular languages.
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1 INTRODUCTION

The subject, Formal Languages and Automata (FLA), is in the basis
of the curriculum of undergraduate computer science [6]. A crucial
artifact of the education material of FLA consists of depictions of
automata, known as state diagrams, and illustrations of common
automata operations, e.g., converting a Nondeterministic Finite
Automaton (NFA) into a Deterministic Finite Automaton (DFA).
Instructors face the challenge of producing multiple illustrations of
theoretical concepts, where the correctness of the depiction depends
on its accuracy and consistency.

Mathematical diagrams are a powerful learning tool. While there
are multiple options to produce high quality visualizations of FLA,
we lack systems that encourage rapid prototyping and customiza-
tion. Image editors only offer low-level graphic primitives and lack
the ability to specify a visual notation language. Generating cor-
rect and consistent artifacts with image editors is error prone and
laborious [8]. Interactive FLA editors, such as [5, 9, 14], require
the user to manually drag and drop elements (such as states and
transitions) to create and relate them, which can then be used for
an array of educational tasks (e.g., acceptance tests). Interactive
FLA editors produce mathematical diagrams with a hard-coded
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notation, so reusing such artifacts in an educational context can
be challenging. The visual notation cannot be adapted to match
the artifacts of a textbook or of the instructor’s slides, which can
introduce confusion for students and inconsistencies in production.
Educators need to devote time to clarify the different conventions
found in the artifacts produced by interactive editors.

This paper introduces the first tool to visualize the computation
of automata. The state of the art has limited support to explain
the computation of an automaton, rendering the execution as a se-
ries of tables. Computation diagrams, e.g., [16, pp. 50], visualize all
reachable runtime states (configurations) of an automaton for a par-
ticular input. Computation diagrams are useful pedagogical device
to understand automata: students can visualize in one diagram the
various possible configurations and the relationships among them.
In such diagrams, nondeterminism is visually evident as a form
of branching, and accepting an input can be explained as a search
algorithm (i.e., reaching an accepting configuration). Furthermore,
manual generation of computation diagrams, say with an image
editor, scales poorly. The upper bound of the size of a computation
diagram is given by the number of states times the length of the
input. Additionally, optimizing the layout of large diagrams to best
fit a certain area is a nontrivial task.

We present a tool called Gidayu1[3] to visualize specifications
of multiple kinds of automata as well as their computations. To the
best of our knowledge, our tool is the first to visualize computations.
Our approach is to separate the definition of an automaton (and
of a computation) from its presentation (i.e., the state diagram, the
computation diagram), while giving full control over the visual no-
tation. The user can refine visual elements, by highlighting, hiding,
or changing the colors and shape of any element.

Our contributions consist of using Gidayu to:

• Section 2, on regular languages: visualizations of DFAs,
NFAs, and Generalized NFAs (GNFAs); visualizations of
computations; automata transformations fromNFA toGNFA,
and from GNA to a regular expression.

• Section 3, on context-free languages: visualizations of push-
down automata (PDAs) and their computations.

• Section 4, on customizing visualizations: styling automata
and their computations, which allows for changing the
appearance of diagrams.

The structure of the remainder of the paper is as follows. Sec-
tion 5 reports on Gidayu in a classroom setting. Section 6 discusses
related work and Section 7 concludes.

2 VISUALIZING REGULAR LANGUAGES

1Gidayu is named after a form of musical narration that accompanies Japanese puppet
shows.
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Listing 2.1: An NFA declaration that generates Figure 1.

1 type: nfa

2 states:
3 q1: {label: q_1, initial: true}

4 q2: {label: q_2}

5 q3: {label: q_3, final: true}

6 transitions:
7 - {src: q1, actions: [b], dst: q2}

8 - {src: q1, actions: [a], dst: q1}

9 - {src: q1, actions: [null,b], dst: q3}

10 - {src: q2, actions: [null,b], dst: q3}

11 - {src: q3, actions: [null], dst: q1}

q1start

q2

q3

a b

ε, b

ε, b

ε

Figure 1: Gidayu’s visualization of Listing 2.1.

We introduce Gidayu by showing visualizations generated from
descriptions of automata. The user specifies an automaton using
our domain-specific language (DSL), e.g., Listing 2.1. From this,
Gidayu can produce two forms of diagrams: a visualization of the
automaton itself (e.g., Figure 1), and a visualization of how that
automaton processes an input (e.g., Figure 4).

To showcase the generality of our tool, we discuss the two kinds
of diagrams discussed in [16, Chapter 1: Regular Languages]: state
diagrams (Section 2.1), that have specializations to DFAs, NFAs, and
GNFAs; and computation diagrams (Section 2.2), that visualize the
semantics of NFAs. A GNFA is an NFA where single transitions are
defined on regular expressions rather than on single letters, used to
show that every NFA can be represented by an equivalent regular
expression [16, Lemma 1.60]. Finally, in Section 2.3, we describe
how to combine automata with common operations on regular lan-
guages. Gidayu can visualize all diagrams and operations presented
in [16, Chapter 1: Regular Languages].

2.1 State Diagrams

A state diagram depicts a finite automaton as a directed graph,
where nodes represent the automaton’s states, arcs represent the
automaton’s transitions.

NFAs. Our finite automata DSL is simple. In Listing 2.1, we find
a section to declare the type of automaton (here nfa), its states, and
transitions. The states section, in Lines 2 to 5, declare the identifier
and attributes each state. For instance, in Line 3, we declare a state
with a unique identifier q1. The first attribute of q1 is a labelwhich
gives the human-readable name of the state (encoded as LATEX). The
attribute initial sets q1 as the initial state of the automaton. The
transitions section, in Lines 6 to 11, declares the transitions of
our automaton. A transition consists of the identifier of the source
state (src), and the identifier of the target state (dst), and a list
of symbols (each encoded as a string) consumed. The keyword

Listing 2.2: A GNFA example.

1 type: gnfa

2 states:
3 s: {label: s, initial: true}

4 q1: {label: q_1}

5 q2: {label: q_2}

6 q3: {label: q_3}

7 a: {label: a, final: true}

8 transitions:
9 - {src: s, dst: q1, actions: [[]]}

10 - {src: q1, actions:[{char: b}], dst: q2}

11 - {src: q1, actions:[{char: a}], dst: q1}

12 - {src: q1, actions:[{union: {left:[], right:{char: b}}}], dst:

q3}

13 - {src: q2, actions:[{union: {left:[], right:{char: b}}}], dst:

q3}

14 - {src: q3, actions:[[]], dst: q1}

15 - {src: q3, dst: a, actions: [ [] ] }

a

q1

q2q3

sstart

a b

ε ∪ b

ε ∪ b

ε

ε

ε

Figure 2: Gidayu’s visualization of Listing 2.2.

a

q2

q3

sstart

ε ∪ b

ε

(a?) · b

(a?) · (ε ∪ b)

(a?) · b

(a?) · (ε ∪ b)

Figure 3: The visualization of the GNFA that results from

automatically removing one state from Listing 2.2.

null denotes an 𝜖-transition. For instance, in Line 9 we declare a
transition from 𝑞1 into 𝑞3 that consumes either 𝜖 or b.

DFAs. Gidayu also visualizes DFAs. The automaton description
for DFAs only introduces a new type called "dfa". DFAs share the
visual notation of NFAs, so we skip giving an example illustration.

GNFAs. Gidayu enforces the usual semantic constraints given
to GNFA, such has having exactly one accepting state, no incoming
transitions to the initial state, no outgoing transitions from the
accepting state, and no parallel transitions. Gidayu typesets the
regular expressions in the transitions of GNFAs. Listing 2.2 lists
an example of a specification of a GNFA which Gidayu renders as
Figure 2.
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Figure 4: Computation diagram of input "bb" (Listing 2.1).

2.2 Computation diagrams

Formal Background onNFA computations. Let𝑁 = (𝑄, Σ, 𝛿, 𝑞𝑖 ,
𝐹 ) be an NFA, where 𝑄 is the set of states, Σ is the set of available
inputs, 𝛿 : 𝑄 × Σ ∪ {𝜖} → P(𝑄) is a transition function, 𝑞𝑖 is the
initial state, 𝐹 ⊆ 𝑄 is the set final states, and P(·) is the power set.
Let𝑤 ∈ Σ★ range over inputs. We can define the computations of
an NFA as a transition system. Let a𝐶 ∈ 𝑄×Σ★ be a configuration of
𝑁 , (𝑞𝑖 ,𝑤) is an initial configuration, for any input𝑤 , and (𝑞, 𝜖) is an
final configuration for any 𝑞 ∈ 𝑄 , where 𝑁 = (𝑄, Σ, 𝛿, 𝑞𝑖 , 𝐹 ). Define
the yields relation ⊨ over configurations as: (𝑞, 𝑐𝑤) ⊨ (𝑟,𝑤) if, and
only if 𝑟 ∈ 𝛿 (𝑞, 𝑎); and, (𝑞,𝑤) ⊨ (𝑟,𝑤) if, and only if 𝑟 ∈ 𝛿 (𝑞, 𝜖).
A computation is a sequence of configurations related by ⊨, e.g.,
𝐶1 ⊨ 𝐶2 ⊨ · · · ⊨ 𝐶𝑛 , where 𝐶1 is an initial configuration. Let
⊨★ denote the reflexive and transitive closure of ⊨. Let the set of
reachable configurations of an NFA 𝑁 processing an input 𝑤 be
defined as {𝐶 | (𝑞𝑖 ,𝑤) ⊨★ 𝐶} where 𝑁 = (𝑄, Σ, 𝛿, 𝑞𝑖 , 𝐹 ).

A computation diagram depicts all computations that start from
a given initial configuration. Gidayu can use the specification of an
automaton, e.g., Listing 2.1, to visualize the execution of a partic-
ular input, rendered as a computation diagram, e.g., Figure 4. The
nodes in the diagram are configurations and the edges represent
the yields relation (⊨). Observe that we omit rendering the input
of each configuration, yet the input of each configuration can still
be inferred by considering the character labeling each edge. For
instance, in Figure 4, there are three nodes 𝑞1, which represent
from left to right the configurations (𝑏𝑏, 𝑞1), (𝑏, 𝑞1), and (𝜖, 𝑞1),
respectively. A deterministic computation can be represented as
a linked sequence of configurations (a path). A nondeterministic
computation can be represented as a tree, or generally, as a directed
graph. Computation diagrams help with understanding nondeter-
ministic computations in two significant ways. First, because there
may exist many ways to accept a certain input, and visually they
are trivial to identify all the paths that reach certain nodes (config-
urations) in a graph (computation). Second, in order to show that
an automaton rejects a certain input, we must show that no path
reaches an accepting configuration, which is also easier to visualize
than textually enumerating all possibilities.

Computations visualizes as a tree. Computations can be
visualized in multiple ways. In a tree-based diagram (e.g., [16, pp.
50]), the children of a node are given by the yields relation. The same
configuration may appear multiple times in a tree visualization.
In a graph-based diagram, the nodes are configurations and the
edges are the yields relation; each configuration is a unique node of
that graph. Our tool employs a graph-based diagram. For instance,

q1start

q2

q3

q3

q3

q1

q1

q2

b

b

ε

ε

b

ε

ε

ε

ε

b

b
ε

ε

Figure 5: Computation diagram of input "bb" (Listing 2.1)

that includes cycles.

in Figure 4, we observe that there are two paths that merge into
configuration (𝑞3, 𝑏): (𝑞1, 𝑏𝑏) ⊨ (𝑞2, 𝑏) ⊨ (𝑞3, 𝑏) and (𝑞1, 𝑏𝑏) ⊨
(𝑞3, 𝑏). A tree-based diagram renders configuration (𝑞3, 𝑏) twice. A
graph-based visualization decreases the overall size of the depiction.
In the worst case, each level of a tree grows quadratically with the
number of states, while each level of a graph is bounded by a
constant (the total number of states). Furthermore, redundancy in
a computation diagram can confuse students, as they may try to
find differences in two identical paths.

Visually grouping 𝜖-transitions. Computations interleave
processing one 𝜖-transition with one non-𝜖 transition. Gidayu can
group each of these phases of computation automatically. In our
experience, grouping 𝜖-transitions helps with understanding the
graph at the cost of requiring more space for the depiction. Fig-
ure 4 illustrates a grouping layout which positions vertically every
configuration with the same string being consumed.

Visualizing cycles caused by 𝜖-transitions. 𝜖-Transitions
do not consume any input, and consequently, they may introduce
cycles in the computation. Gidayu allows for controlling whether
or not to show cycles. Hiding cycles simplifies the understanding, as
there is less information on screen, and simultaneously, the acyclic
version preserves acceptance and rejection. We can compare the
acyclic version (Figure 4) with the cyclic version (Figure 5).

2.3 Operations on Regular Languages

Gidayu implements multiple operations on automata:

• convert an NFA (input) into a GNFA (output), e.g., Listing 2.1
yields Listing 2.2.

• remove a state from a GNFA (input) which yields another
GNFA (output), e.g., Listing 2.2 yields a GNFA which is then
visualized as Figure 3.

• convert an NFA (input) into a DFA (output)
• given two NFAs (input) generates the union NFA, or the

concatenation NFA (output)
• given one NFA (input) generates the star NFA (output)

3 VISUALIZING CONTEXT-FREE LANGUAGES

We now discuss the visualization of PDAs and their computations
using Gidayu. Our tool supports both state diagrams and computa-
tion diagrams with minimal syntax for describing automata.

To assess the generality of our tool, we discuss the two kinds
of diagrams discussed in [16, Chapter 2: Context-Free Languages]:
parse trees to visualize the computation of grammars and state
diagrams to visualize PDAs. Parse trees have no characteristic visual
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q1start q2 q3 q4
ε, ε→ x

a, ε→ a

ε, ε→ ε

b, a → ε

ε, x → ε

Figure 6: Visualizing the PDA in Listing 3.1. A transition 𝑎, 𝑏 → 𝑐 means read 𝑎, pop 𝑏 and push 𝑐.

Listing 3.1: A PDA that recognizes language {𝑎𝑛𝑏𝑛}.

1 type: pda

2 states:
3 q1: {initial: true, label: q_1}

4 q2: {label: q_2}

5 q3: {label: q_3}

6 q4: {label: q_4, final: true}

7

8 transitions:
9 - {src: q1, push: x, dst: q2}

10 - {src: q2, read: a, push: a, dst: q2}

11 - {src: q2, dst: q3}

12 - {src: q3, read: b, pop: a, dst: q3}

13 - {src: q3, pop: x, dst: q4}

notation, so they can be rendered with general-purpose graph-
drawing tools, such as GraphViz. Computation diagrams of PDAs
are absent from [16, Chapter 2: Context-Free Languages].

State diagrams. Gidayu can be used to visualize nondeter-
ministic pushdown automata (PDAs) and deterministic pushdown
automata (DPDAs). In Gidayu’s syntax, we must specify the type as
pda, and the transitions now have additional, optional, parameters:
a push symbol (given as a string), a pop symbol, and a read symbol.
Our tool renders Listing 3.1 as Figure 6.

Computation diagrams. The computations of PDAs can be
visualized using computation diagrams. At runtime, a PDA con-
figuration consists of a triple with the current state, the sequence
of symbols that remain to be processed, and a stack of symbols
in memory. Gidayu renders the computation diagram of string
"aabb" as Figure 7. We note that some computations of PDAs are
infinite. For instance, a PDA with a self-loop of the form 𝑞

𝜖,𝜖→x−−−−−→ 𝑞

would yield an infinite 𝜖-closure, which would then produce an
infinite computation when reaching state 𝑞. In practice, the problem
of infinite computations does not affect the usual PDAs discussed
in classes — Gidayu implements a cut-off when generating com-
putations to cope with this problem. The problem of visualizing
infinite computations remains open.

4 CUSTOMIZING VISUALIZATIONS

Gidayu lets the user change the appearance of their visualization
at two different levels. Locally, the user can override the styling
of a particular state/transition with styling annotations. Globally,
the user can override the styling of all visual elements (states and
transitions) by providing a style sheet. Configuring the appearance
of state diagrams and computation diagrams is quite similar, so we
restrict our discussion to state diagrams.

Styling an automaton. Listing 4.1 shows a variation of our run-
ning example Listing 2.1, where we configure the visualization to
illustrate the various capabilities. A user can highlight certain states

Listing 4.1: An NFA declaration that generates Figure 8, we

emphasize in olive the keywords used to fine tune states and

transitions.

1 type: nfa

2 states:
3 q1: {label: q_1, initial: true, style: [fill=green]}

4 q2: {label: q_2, highlight: true}

5 q3: {label: q_3, final: true, hide: true}

6 transitions:
7 - {src: q1, actions:[b], dst: q2, hide: true}

8 - {src: q1, actions:[a], dst: q1, topath: [loop below]}

9 - {src: q1, actions:[null, b], dst: q3, highlight: true}

10 - {src: q2, actions:[null, b], dst: q3, style: [dotted]}

11 - {src: q3, actions:[null], dst: q1}

or transitions of a diagram to visually emphasize certain elements.
For instance, in Line 4, we highlight state 𝑞2 (rendered in a yellow
background); in Line 9, we highlight transition 𝑞1 → 𝑞3 (rendered
with a thicker edge, in red). Users can also hide states/transitions,
which by default set the opacity to 20%. For instance, in Line 5, we
hide state 𝑞3, and, in Line 7, we hide transition 𝑞1 → 𝑞2. Gidayu
allows overriding highlight/hide status through the command line
without changing the source file, e.g., to generate an animation
where we change the state being highlighted, or to partially dis-
close states/transitions. Gidayu exposes the underlying graphing
toolkit to change the appearance of a state/transition. For instance,
in Line 3 we change the fill color of a state with the style anno-
tation; in Line 10, we change the style of transition 𝑞2 → 𝑞3 to be
rendered as a sequence of dots. A user can also change the position-
ing of transitions, which is useful to cope with undesired decisions
by the layout algorithm. In Line 8, we use the topath annotation
to render the self-loop below the state, rather than above.

Customizing the style sheet. The default visual appearance
of diagrams can be configured with a file, called the style sheet. We
can configure the default styling of states and transitions, as well as
the appearance of each modifier (highlighted and hidden). We can
customize the colors, the line width of each element, the line style,
the shape of arrows, among others. Style sheet configuration reuses
the styling keywords of configuring a single automaton whenever
possible. In Listing 4.2, we show an excerpt of a style sheet. Section
state configures the appearance of states; in Line 2, we set the
default background color of states to be yellow. Section transition
configures the appearance of transitions; in Line 4, we set the default
color of transitions to be blue. Section format configures the text
of the label, which can be used to set the notation of transitions.
For instance, the transitions in PDAs sometimes denoted as 𝑎, 𝑏/𝑐
(rather than 𝑎, 𝑏 → 𝑐). The code in Lines 6 to 8 achieves this change,
by ranging over each parallel transition with a for-loop and then
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Figure 7: The PDA in Listing 3.1 processes input aabb. Depictions of a PDA configuration place the state above the horizontal
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Figure 8: Gidayu’s visualization of Listing 4.1.

Listing 4.2: A declaration of the visual notation for transi-

tions (edges).

1 state:
2 default: [fill=yellow]

3 transition:
4 default: [blue]

5 format: |

6 {% for x in actions %}

7 {{ x.read_char }},{{ x.pop_char }}/{{ x.push_char }}

8 {% endfor %}

renders each PDA-transition as𝑎, 𝑏/𝑐 . Format sections use a domain-
specific language, called Jinja [11], that features a Python-inspired
syntax, basic control flow structures (loops and conditionals), and
common string operations. Figure 9 visualizes the PDA specified
in Listing 3.1 using an alternative style sheet that resembles the
popular JFLAP tool. Notice that besides changing the default colors
of states and transitions, we changed the appearance of the initial
state and the shape of the arrow tips. Our style sheet file allows
more control over the appearance with extensions written in LATEX,
which is the underlying imaging toolkit that Gidayu uses.

5 GIDAYU IN THE CLASSROOM

In this section, we discuss using Gidayu in a classroom environ-
ment, we discuss how computation diagrams can be used to discuss
visual proofs, and we discuss the interoperability of our tool.

Pedagogy. We have been using Gidayu for 3 semesters at Uni-
versity of Massachusetts Boston. Students generally find state di-
agrams intuitive. The following quotes come from informal dis-
cussions with students and should be regarded as anecdotal evi-
dence. Some students found computation diagrams surprising, as
they were unsure about the semantics of NFAs: “at first [I was]
confused trying to understand how the automata ‘knew’ which

path to take such that it would lead to an end state.” Computa-
tion diagrams helped students better understand the semantics, by
gradually disclosing the computation diagram: “I definitely like
seeing a progression, with nodes highlighted, as this would serve
to clarify the ambiguity.” To achieve this, we show the computa-
tion diagram and state diagrams side-by side. We then visualize
how the computation unfolds by showing/hiding configurations
in the computation diagram and highlighting the state diagram.
These multiple visualizations can all be achieved from the same
automaton, and using the command line options to highlight/hide
states/transitions/configurations.

Computation diagrams as visual proof. The first author has
used computation diagrams in class to introduce the notion of a
visual proof, and to showcase the difference between the existential
and universal quantifiers. We instruct students that a computation
diagram serves as a visual proof of input acceptance and of input re-
jection, as it lists exhaustively all possible computations for a given
input. Verifying the correctness of a proof consists of verifying the
correctness of the computation diagram. When proving acceptance,
we require the student to identify at least one final configuration in
the computation diagram. When proving rejection, we require the
student to state that there are no final configurations in the diagram.
We have also used computation diagrams to serve as an education
device to distinguish existential quantification (acceptance) from
universal quantification (rejection). Hannah and Sidoli survey using
visual representations as proofs in [4].

Interoperability. The syntax of our DSL to specify automata
(and style sheets) can be given in either JSON or YAML (all of the
examples in this paper are written in YAML). JSON and YAML are
popular interchange file formats, which encourages third-party
integration of our visualizations.

6 RELATEDWORK

Table 1 summarizes this section, divided in terms of its user in-
terface. In this table, we compare each work in terms of whether
there is support for a customizable notation/visualization, and for
visualizing an automaton and its computations.

Graphical User Interface (GUI). We discuss related work that
offer a GUI to visualize FLA. JFLAP [5, 14] and OpenFLAP [9] are
widely used in education as a workbench to visualize automata,
and to exercise automaton inputs and its transformations. Users
cannot customize the visual notation of state diagrams and there is
no support for visualizing computation diagrams. JFLAP renders
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Figure 9: Gidayu’s visualization of Listing 3.1 using a different style sheet.

Table 1: Feature comparison, where G represents Gidayu,

“Custom. viz.” means customizable visualization, “Comp. dia-

gram” means computation diagram.

[14] [9] [1] [15] [7] [19] G

UI GUI GUI GUI API API DSL DSL
Custom. viz. ✗ ✗ ✓ ✗ ✗ ✓ ✓

State diagram ✓ ✓ ✓ ✓ ✓ ✗ ✓

Computation ✓ ✗ ✗ ✓ ✓ ✗ ✓

Comp.diagram ✗ ✗ ✗ ✗ ✗ ✗ ✓

computations textually: the user can step through a series of ta-
bles of configurations, one table per letter of the input. There is
no way to visualize the relationship between all configurations, as
computation diagram provide. GUItar [1] provides a GUI to inter-
actively draw state diagrams and export the automaton to multiple
well known file formats. This tool allows customizing the visual
notation of state diagrams, but lacks support for testing inputs and
visualizing computations.

Application Programming Interface (API). There are many
works for symbolic manipulation of FLA with an API [2, 10, 12,
13, 17, 18]. Here, we detail related work to visualize FLA with an
API. PyFormlang [15] provides an API in Python to study FLA.
Users cannot customize the visual notation of state diagrams and
there is no support for computation diagrams. PyFormlang lacks
support for computations; it only performs membership checks (i.e.,
whether or not an input is accepted). visual-automata [7] provides
an API in Python to study FLA. Users cannot customize the visual
notation of state diagrams. visual-automata renders computations
textually as a table and extends state diagrams. A state diagram
is annotated with additional edges: whenever one configuration
yields another configuration, draw an edge from the state of the
source configuration to the state of the target configuration. For
instance, in Figure 4, we have the following steps (𝑏, 𝑞2) ⊨ (𝜖, 𝑞3)
and (𝑏, 𝑞2) ⊨ (𝑏, 𝑞3)—a step is a pair of reachable configurations.
visual-automata would draw two edges between state 𝑞2 and
state 𝑞3. Such an approach does not scale with the computation
size, since any two configurations that refer to the same pair of
states, adds another parallel edge to the state diagram. Additionally,
the information about the string being processed is lost. In contrast,
the processed inputs are readily available in Figure 4. This leaves the
student to explore the progression of string recognition mentally,
rather than visually, as the computational unfolds.

Language-based Interface. In closing, we cover related work
that offers a DSL to visualize diagrams. Penrose [19] is a general
system for creating mathematical diagrams. Gidayu and Penrose

follow the same approach of separating content from presentation
with a language-based interface. Penrose does offer primitives to
specify the visual notation of a certain diagram, but does not support
FLA artifacts, such as state diagrams or computation diagrams.

7 CONCLUSION

We introduce Gidayu, a system to visualize automata, computations,
and automata transformation. We discuss how to use Gidayu to
visualize regular languages (via DFA, NFA, or GNFA) and context-
free languages (via PDA or DPDA). To show case the generality of
our tool, we show that our tool supports most diagrams presented
in a well known textbook on FLA [16]. Gidayu allows configuring
the visualization of an automata, the color, shape, and notation of
each element. Our tool also includes a small DSL to configure the
default appearance of the various diagrams. Our DSLs are based
on YAML, a well known data-serialization language, to facilitate
integration with 3rd-party tools and batching.

Future work includes supporting more kinds of automata and
their computations. We would like to support more kinds of au-
tomata (e.g., Mealy machines, Moore machines, and Turing ma-
chines). Many of these kinds of automata can already be rendered,
by encoding them as an NFA. However, such an encoding does not
support visualizing computations. We would also like to explore
techniques for visualizing large computations. A possible direction
is to support interactive sampling of computations. Visualizing
infinite PDA computations remains an interesting theoretical chal-
lenge, but in our experience such computations are rarely studied
in the context of undergraduate FLA.
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