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membership, and optional-waits. This allows Armus to handle the key barrier synchronisation patterns found

in modern languages and libraries. We implement Armus for X10 and Java, giving the first sound and complete

barrier deadlock verification tools in these settings.
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task-event and event-task dependencies. Decoupling these two kinds of dependencies facilitates the verification

of distributed barriers with dynamic membership, a challenging feature of X10. Further, our base graph

representation can be dynamically switched between a task-to-task model, Wait-for Graph (WFG), and an

event-to-event model, State Graph (SG), to improve the scalability of the analysis.

Formally, we show that the verification is sound and complete with respect to the occurrence of deadlock in

our core phaser language; and that switching graph representations preserves the soundness and completeness

properties. These results are machine checked with the Coq proof assistant. Practically, we evaluate the

runtime overhead of our implementations using three benchmark suites in local and distributed scenarios.

Regarding deadlock detection, distributed scenarios show negligible overheads and local scenarios show
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1 INTRODUCTION

Dynamic verification of barrier deadlocks. The rise of multicore processors and networked clusters

has pushed mainstream programming languages to incorporate various concurrency features, an

important class of which are barriers and their related mechanisms. The basic functionality of a

barrier is to designate a point in the execution of a group of tasks at which each task is blocked

until all have reached the barrier. Java 5–8 and .NET 4, for example, introduced several standard

APIs that provide barriers explicitly or are built on top of barriers: latches, cyclic barriers, fork/join,

futures, and streams. Recent languages for parallel programming have also been designed with

more advanced abstractions as first-class language features, such as clocks in X10 [10] and phasers
in Habanero-Java (HJ) [8], that are more expressive than basic barriers.

As with many other concurrency mechanisms, deadlocks—in which two or more tasks blocked

on distinct barriers are waiting (perhaps indirectly) for each other—are one of the primary errors

arising in barrier programs. Historically, the approach to counter barrier deadlocks has been to

restrict the permitted barrier synchronisation patterns such that programs are barrier-deadlock free

by construction; e.g., OpenMP
1
restricts barrier composition to syntactic nesting. Unfortunately, to

date there are no available tools for comprehensive verification of barrier-deadlocks in X10 or HJ,

nor for standard libraries such as the Java Phaser2 and the .NET Barrier [44] APIs.
Two key issues make barrier-deadlock verification challenging in these recent languages and

systems. The first is that barriers may be created dynamically and communicated among tasks as

values, referred to as first-class barriers [67]. Due to the difficulty of statically analysing the usage

of first-class barriers precisely (e.g., due to aliases and non-determinism), the state-of-the-art in

barrier-deadlock verification is based on dynamic techniques that monitor program execution at

run-time. (Existing tools for static verification are limited to simpler systems where barriers permit

only global, i.e., system-wide, synchronisations; see Section 8.) The second is that, in contrast to

the conservative restrictions in earlier systems, the richer barrier features in recent languages

are motivated by expressiveness at the cost of making deadlock verification, including dynamic

approaches, more complicated. One of the key features supported in Java, .NET, X10, and HJ, but

not handled by any existing barrier-deadlock verification tool, is dynamic membership [53], which

allows the group of tasks participating in synchronisations on a barrier to change during execution.

The state-of-the-art in dynamic barrier-deadlock verification is based on the well-established

concept of Wait-For Graph (WFG) and has been developed for MPI
3
(e.g., the MUST error detection

tool [32, 34]) and UPC
4
[57]. AWFG [40] is a graph model of the control flow dependencies between

tasks. Applied to barriers, theWFG nodes represent tasks, and a directed edge from a task t to task t ′

signifies that t is blocked on a barrier, waiting for t ′ to reach the barrier. WFG-based approaches

typically work by maintaining an abstract representation of the concurrency constraints in a system,

from which the WFG can be derived and deadlock detection performed as a suitable graph analysis,

such as checking for circular dependencies.

Existing WFG-based tools, such as MUST, offer precise deadlock detection in systems featuring

multiple barriers, but suffer from limitations in the presence of more advanced barrier features.

One is that they are designed on the assumption of static barrier membership (as is the case for

MPI barriers). Naive extension to dynamic membership faces the challenges of maintaining the

membership status of barriers consistently (since barrier synchronisations and (de)registration

operations occur concurrently) and efficiently (e.g., w.r.t. the overheads of any additional state

1
http://openmp.org/

2
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

3
http://mpi-forum.org/

4
https://upc-lang.org/
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synchronisations used for consistency). These issues are exacerbated by distributed barriers, a key
design point of X10.

Another limitation is committing exclusively to the WFG model. The WFG originates from

a distributed databases setting [40] involving a fixed number of tasks and dynamic resource

creation. The WFG was thus optimised for concurrency constraints between fewer tasks and

more resources, which is often not the case in more advanced barrier programs with dynamic

task spawning and barrier creation, as possible in X10 and Java. Its counterpart, the State Graph
(SG) [12] favours scenarios with more tasks than barriers. In general, however, we may expect

that the most suitable model cannot be predicted a priori, and that the situation may change

as execution proceeds. Committing to a specific graph model may thus hinder the scalability of

dynamic deadlock verification.

Armus. This paper presents Armus, a dynamic verification framework for general barrier dead-

locks based on phasers. A phaser is a generalisation of the concept of barrier that allows tasks to

selectively wait on barrier steps, thus permitting any task to progress to an arbitrary future step

(i.e., phase) independently of its peers. (Section 2.3 will give more a detailed overview.) Phasers

were originally developed in Habanero-Java (HJ) [8, 62] as an extension of X10 clocks, one of the

primary motivations being to support asynchronous producer/consumer patterns. Armus is the

first framework to support sound and complete deadlock verification for phasers. The key elements

of Armus are as follows.

• We formalise the operations of a core concurrent language with phasers that subsumes the

barrier facilities of X10, HJ, and the standard Java/.NET Barrier APIs, including dynamic

membership. We characterise phaser deadlocks in our language in terms of dependencies

between tasks and synchronisation events on phasers.

• On the basis of the above, we introduce a new model for general barrier-deadlock verification,

the Task-Event Graph (TEG). We show that deadlock verification by TEG cycle detection is

sound and complete with respect to our characterisation of phaser deadlock.

• We show that a WFG and an SG can be readily derived from a TEG, such that all three

models are equivalent w.r.t. the existence of cycles. This promotes a technique to improve

the scalability of the graph-based verification, by automatically and dynamically switching

between models.

• We implement Armus as Armus-X10 and JArmus. Armus-X10 is the first sound and complete

deadlock verification tool for native X10 programs using clocks and finish-barriers. We show

how the design of Armus lends well to distributed barriers, as implemented in Armus-X10.

JArmus is the corresponding tool for Java programs using the Phaser API (and related barrier
APIs) extended with one additional method for explicitly registering tasks with phasers.

Armus proposes the TEG model, with its notion of barrier synchronisation events, firstly as

a means to capture the richer concurrency dependencies of phaser systems, in comparison to

standard barriers. Modelling explicit synchronisation events arises naturally from the fact that

tasks waiting on a given phaser may actually be waiting at arbitrarily different phases. The insight
of Armus is to interpret the act of waiting on a particular phase as observing a timestamp, in a

similar spirit to Lamport’s logical clocks [41], by which we infer dependencies between a task and

not only its current phase event (as with basic barriers), but also all future events.

Secondly, the TEG is an effective model for treating dynamic membership. Generating traditional

wait-for dependencies directly between tasks requires synchronised bookkeeping between the

blocking status and barrier membership of every such pair of tasks. The commonplace technique

for building a WFG is to range over every blocked task and then query the blocked operation for

its missing participants. Note, however, that for a barrier with dynamic membership, the complete
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set of participants can only be known at the end of synchronisation. Armus avoids this issue by

decomposing the dependencies into separate relations between tasks and events—a dependency

from a blocked task to an event can be asserted independently of the membership of the relevant

phaser. This in turn facilitates the application of Armus to distributed barriers: instead of needing

to synchronise the status of two potentially remote tasks for each wait-for dependency, Armus

allows the global view of the system to be built from the local status of each blocked task (the event

being observed, and the phaser memberships of the task) and the monotonic causal ordering of

events.

Dynamically selecting between graph models for deadlock detection, based on the monitored

ratio of tasks to barriers, is a novel technique of Armus. The difference on the size of the graph

can be dramatic. For instance, in an X10 benchmark PS (see Section 7.3),
5
the average edge count

for the WFG model is 789 and the SG is 7, while the average using dynamic model selection is

6 (Table 3); and the average execution times, for deadlock avoidance, are 113s for WFG, 50s for

SG, and 34s for dynamic model selection (Figure 9). In all cases of our benchmarks, the automatic

model selection performs at least as well (i.e., with negligible overheads) as manually selecting the

best fixed model.

Outline. This article revises and extends an earlier version of this work [13] with new material

and full proofs of results. Firstly, we include a new section with a comprehensive summary of

barrier features found in practice and their deadlock characteristics. Regarding our core phaser

language, first proposed in the earlier work, we add primitives for awaiting on a phaser at an

arbitrary phase, and awaiting on a phaser by an unregistered task; these are needed to model the

full functionality of phasers in HJ. Based on the extended language, we make significant updates

to the core definitions of phaser deadlocks and dependency relations both in terminology and

technical details. The definitions of Task-Event Graph construction, and Wait-For/State Graph

contraction, are also revised technically. Regarding the properties of Armus, we develop new proofs

of the soundness and completeness of the verification, and graph model equivalence, according

to the updated definitions. We highlight that all definitions and proofs in this paper have been

formalised and machine-checked in Coq, which is new to this article. Compared to the earlier

work, we offer more detailed explanations and extended discussion of the practical methodology

and implementations. The performance evaluation is also updated, including new benchmarks

to evaluate deadlock verification using the TEG directly, in addition to the WFG/SG. Throughout

the paper, we have extended the discussions and included many new examples with detailed

explanations. Lastly, we have updated the related work with recent publications.

The structure of this article is as follows.

Section 2 firstly covers the background to this work. We give barrier programming examples in

X10, and summarise a range of barrier programming features found in practice and their deadlock

characteristics. Secondly, we explain the concept of phasers, and outline the phaser-based approach

of Armus to deadlock verification for general barrier synchronisations.

Section 3 defines the core concurrent language with phasers used by Armus to capture all of the

surveyed barrier programming features. We define the notions of global and local phaser deadlocks

for Armus systems in terms of dependencies between tasks and synchronisation events.

Section 4 presents the deadlock verification methodology of Armus. We define the derivation of a

TEG model from Armus system states, and the transformation of a TEG to the associated WFG or

SG.

5
http://www.cs.columbia.edu/~martha/courses/4130/au13/
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Listing 1. Coordinating parallel tasks using cyclic and join barriers in X10.

1 // Pre: "a" is an array length I+1, initialised to: 0, 0, 0, ..., I

2 val c = Clock.make(); // Cyclic barrier

3 finish { // Join barrier

4 for (i in 1..(I-1)) // Spawn I-1 child tasks..

5 async clocked(c) {

6 for (j in 1..J) { // ..that loop (together) J times

7 val l = a(i-1);

8 val r = a(i+1);

9 c.advance(); // Read step on the clock (cyclic synchronisation)

10 a(i) = (l+r)/2;

11 c.advance(); // Write step on the clock (cyclic synchronisation)

12 }

13 }

14 } // Wait for all child tasks to terminate (join synchronisation)

15 // Result: "a" holds values: 0, 1, 2, ..., I

Section 5 shows the main results of Armus: that a TEG and the associated WFG and SG are

equivalent w.r.t. the presence of cycles, and that cycle detection in a TEG derived from a system

state is sound and complete w.r.t. the occurrence of deadlocks in the system.

Section 6 presents the implementation of Armus for X10 (Armus-X10) and Java (JArmus). We

discuss the application of Armus to distributed barriers, implemented in Armus-X10.

Section 7 performs an extensive performance evaluation of Armus in Java and X10, using the NAS

Parallel Benchmark, the Java Grande Forum Benchmark suite, and the HPC Challenge benchmark

suite. Overall, the worst-case runtime-factor for deadlock detection is 1.21×, and is often not

statistically significant, e.g., in distributed benchmarks.

Section 8 discusses related work and Section 9 concludes.

The Armus project Web page
6
includes the full Coq implementation of the definitions and proofs,

full source code for the Armus-X10 and JArmus implementations, and the benchmark scripts and

data.

2 BARRIER-BASED PARALLEL PROGRAMMING AND DEADLOCKS

2.1 Cyclic and Join Barriers in X10

We start with an introductory deadlocked parallel program that uses barriers, written in X10.

Listing 1 implements a simple parallel iterative averaging algorithm [19, 63] that takes a one-

dimensional array of I+1 numbers, for I>1, initialised to 0 except for the last element, which is set

to I. The algorithm converges on the sequence of natural numbers from 0 through I by repeatedly

updating, in parallel, each of the elements (except first and last) to an average of its neighbours.

This example features two kinds of barriers: cyclic barriers, for recurrent synchronisation between

a set of ongoing tasks, and join barriers, for synchronisation on the termination of a set of tasks.

A parallel task is spawned by the async statement (Line 5) inside the outer for-loop for each

index 1 through I-1. A cyclic barrier, represented by the clock created and assigned to c (an

immutable val) on Line 2, is used to coordinate these tasks. Each child task is registered (clocked)
to the clock; the parent task is implicitly registered on clock creation. The work performed by each

6
https://bitbucket.org/cogumbreiro/armus/wiki/TOPLAS17
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Table 1. Barrier synchronisation features supported in various languages.

UPC MPI Java .NET X10 HJ (Armus)

Group synchronisation × ✓ ✓ ✓ ✓ ✓ ✓

Split-phase synchronisation ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic membership × × ✓ ✓ ✓ ✓ ✓

Async. producer-consumer × × × × × ✓ ✓

task in the inner for-loop is split into read and write steps, delimited by the advance operations
on c. A barrier synchronisation is performed by calling advance: the calling task is blocked until

every task registered to the clock has called advance. The first advance (Line 9) thus ensures every

task i completes the read step of the current j-th iteration, reading the a(i-1) and a(i+1) values,

before any can proceed to the write step. The second advance similarly ensures every task has

finished the current write step, writing the average of the read values to a(i), before any can

proceed to the (j+1)-th iteration.

The finish statement applies a join barrier that blocks the executing task (the parent task) at

the end of the finish (Line 14) until all nested tasks (the I-1 child tasks) have terminated.

Deadlock due to advanced barrier features. Certain barrier systems are restricted by design to

ensure deadlock-freedom (see Section 2.2). By contrast, incorrect use of more advanced barrier

features supported in modern systems such as X10 may give rise to subtle deadlock situations. The

above example demonstrates a deadlock related to group synchronisation, where different, but not
necessarily disjoint, groups of tasks are registered to separate barriers, and dynamic membership of

tasks to barrier groups.

The deadlock arises from every child task being blocked on its first advance call (Line 9) because
the parent task never performs the corresponding advance. Instead, the parent task is blocked on

the finish, waiting for the child tasks to terminate, establishing a cyclic dependency between the

parent and each child task.

For both the clock and finish barriers, each child task is dynamically registered at some execution

point after the barrier is created: the clock and finish barriers are created on Lines 2 and 3, and the

child tasks are spawned and registered later, one by one, in each iteration of Line 5 by the parent

task. Tasks may similarly be dynamically deregistered from a barrier. The natural fix for the above

deadlock is to have the parent task perform the deregistration operation on the clock, c.drop(),
between Lines 13 and 14. Then the resulting synchronisation groups will be such that all tasks are

registered to the finish barrier, but only the child tasks are registered to the clock.

Note: it would be incorrect for the parent task to drop its clock membership prior to spawning

all the child tasks (or similarly, if X10 did not implicitly register the parent task on clock creation).

This would avoid the deadlock, but also introduce a race condition between the collective iteration

of the child tasks due to the concurrency between the running tasks and any remaining spawns by

the parent.

2.2 An Overview of Barrier Synchronisation Features and Deadlock Errors

We give an overview of a range of key barrier synchronisation features, as supported by the lan-

guages and libraries in Table 1. We briefly discuss the purpose of each feature, and the implications

for deadlock detection, with small examples. Table 2 summarises up front the support for deadlock

verification currently available to programmers in each setting. Prior to Armus, there were no

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Table 2. Available support for (dynamic) deadlock verification with respect to the barrier features in Table 1.

(‘✓’ means both sound and complete; ‘−’ means no support.)

UPC MPI (MUST) Java .NET X10 HJ Armus

Barrier deadlock
verification?

✓
✓ (for group

sync. only)

− − −
sound (but

incomplete)

✓

comprehensive barrier deadlock detection facilities or tools, dynamic or otherwise, that supports

all of the listed features.

The languages/libraries in Tables 1 and 2 are as follows.UPC refers to the barrier functionality of

Berkeley Unified Parallel C.
7 MPI refers to the MPI Barrier and MPI IBarrier operations on an

MPI communicator.
8 X10 refers to clocks (whose functionality subsumes that of finish-barriers and

SPMDBarrier). HJ (and Armus) refer to the functionality of phasers, explained later in Section 2.3.

Java refers to the standard PhaserAPI,2 which is a limited version of the general concept of phasers

(see Section 6.4), but nevertheless subsumes the capabilities of other standard Java barrier libraries

such as CyclicBarrier and CountDownLatch. .NET refers to the standard Barrier API,9 which
is the .NET counterpart of the Java Phaser.

Group synchronisation. Barrier programming in UPC is restricted to conducting “global” syn-

chronisations, where every task in a system is implicitly a member of every barrier. A system that

only involves such global barriers is deadlock-free if and only if all tasks synchronise on the same

barriers in the same order: simply detecting that any two tasks are blocked on different barriers is

sufficient to conclude a global deadlock, i.e., that every task in the whole system is (or will become)

stuck [57].

Group synchronisation, supported in every other case of Table 1, is the generalisation that

permits an arbitrary subset of system tasks to be registered to a barrier. This introduces the notion

of local deadlocks, where a subset of system tasks can never progress despite the progress of the

system as a whole. The finer granularity of this feature is more expressive, but deadlock detection

in turn requires checking for a more general form of circular control flow dependencies between

multiple tasks transitively.

The standard approach in practice is to model the concurrency constraints of a system as a

Wait-For Graph (WFG), in which circular dependencies manifest as graph cycles. When applied

to barriers, the nodes of a WFG represent the tasks, and the edges represent the task-to-task

wait-for relation induced by a task being blocked on a barrier that a co-member task has not yet

reached. For MPI, the MUST tool includes sound and complete deadlock detection for barriers with

group synchronisation (since every MPI communicator is an implicit barrier group) by a WFG

approach [32, 34].

Example 2.1. In Figure 1 (a), three tasks each synchronise on a different subset of two clocks

out of three (a, b, and c). Once all three tasks are spawned, each barrier is synchronising on a

different group of two tasks. The order in which each task advances its clocks establishes a circular

dependency between all three tasks involving all three clocks, i.e., t1 wait-for t2 via a, t2 wait-for t3
via b, and t3 wait-for t1 via c.

7
http://upc.lbl.gov/publications/upc-lang-spec-1.3.pdf (§ 6.6.1)

8
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (§ 5.3)

9
https://msdn.microsoft.com/en-us/library/system.threading.barrier
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1 async clocked(a, c) { // t1
2 a.advance(); // ×

3 c.advance();

4 }

5 async clocked(b, a) { // t2
6 b.advance(); // ×

7 a.advance();

8 }

9 async clocked(c, b) { // t3
10 c.advance(); // ×

11 b.advance();

12 }

13 /* × means certain deadlock*/

1 async clocked(a, b) {

2 if (condition) {

3 b.resume();

4 }

5 a.advance(); // ?
6 b.advance();

7 }

8 b.advance(); // ?
9 a.advance();

10

11 /* ? means potential

12 * deadlock, depending

13 * on the if-condition*/

1 async clocked(a, b) {

2 b.advance(); // ?
3 }

4 if (condition) {

5 b.drop();

6 }

7 a.advance(); // ?
8

9

10

11 /* ? means potential

12 * deadlock, depending

13 * on the if-condition*/

(a) group synchronisation (b) split-phase sync. (c) dynamic membership

Fig. 1. Barrier deadlock Examples 2.1 to 2.3 in X10.

The above example by itself is a global deadlock (the main X10 task, that spawns the three child

tasks, implicitly waits for the termination of all spawned tasks). This fragment could, however,

constitute a local deadlock as part of a larger system (e.g., by extending the parent task with some

continuation), which we formalise in Section 3.2. Dynamic verification of global deadlock is trivial

for any system, by simply checking if all (user) tasks are blocked. Many systems implement only

global deadlock detection, such as HJ [36], giving a verification that is sound (no false positives)

but incomplete (since any non-global deadlock is a false negative).

Split-phase synchronisation. Split-phase synchronisation [29, 38] allows a task to perform a

barrier synchronisation over two steps, instead of just a single atomic action. A task initiates its next
synchronisation via a non-blocking background operation, and can wait for the synchronisation
to conclude, i.e., when all tasks have initiated the synchronisation, as a separate operation at a

later point. In X10, the initiation operation on clocks is resume, and the wait operation is simply

advance (an advance basically includes an implicit resume if not already performed). Split-phase

allows a task to concurrently overlap barrier synchronisation with other work, which is useful for,

e.g., hiding network latency in distributed programs [9, 11, 74].

Example 2.2. In Figure 1 (b), the parent and child tasks synchronise on clocks a and b. Although
the two tasks wait on their two clocks in opposite order, there is no deadlock if the condition
in the child task evaluates to true as it will initiate the synchronisation on b before waiting on a.
Otherwise, a deadlock will occur.

Although split-phase synchronisations are available in every case of Table 1, deadlock detection

for split-phase is only supported in UPC [57], facilitated by the restriction to global synchronisations

described earlier. In the presence of group synchronisation, a verification would have to consider,

in addition to blocking status of tasks and group memberships, the initiation status of each task

for every synchronisation operation it is involved in. MPI supports split-phase by the immediate

MPI IBarrier operation, but the deadlock detection in MUST does not take the initiation status of

such synchronisations into account [30].

Dynamic membership. A barrier restricted to static membership does not permit the registration

or deregistration of tasks once any member task has commenced execution; in the presence of group

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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synchronisation, static task groups are typically fixed on barrier creation (e.g., MPI communicators).

Conversely, dynamic membership allows tasks to be registered and deregistered over the lifetime

of a barrier. All of the X10 examples seen so far implicitly feature dynamic membership.

Example 2.3. In Figure 1 (c), the child task is dynamically registered to pre-existing clocks a
and b, which the parent task is also registered to (in X10, a task may only register a child task to a

clock if it itself is registered). If the condition in the parent task evaluates to false, a deadlock arises

because the parent task blocks by advance on a, while the child task blocks on b, establishing a
circular dependency. Otherwise, the parent dynamically deregisters from b, allowing the child task

to successfully terminate, regardless of whether the deregistration occurs before or after the child

reaches the advance. On termination, the child implicitly deregisters from its barriers, which in

turn allows the parent task to pass its advance.

Static membership simplifies dynamic analysis of barrier deadlocks because, for any task waiting

on some barrier, the set of candidate tasks which the former task may be waiting for (i.e., its
co-members) is a run-time invariant throughout the life-cycle of the barrier. This facilitates WFG-

based approaches because the only information required to establish a wait-for dependency from a

waiting task to any of its fixed co-member tasks is that the latter has not reached the same barrier.

By contrast, in dynamic membership the set of wait-for candidates can change per phase. A wait-for

dependency to some other task t first requires confirming that the t is indeed a member of the

relevant barrier at the point in system execution for which the analysis is being conducted. The

difficulty of such checks is compounded when verifying distributed programs, as the query might

involve communication between sites to transmit the membership status.

We discuss how Armus supports distributed barriers in Section 6.3. Deadlock detection for

distributed barriers is supported by MUST for the static membership barriers of MPI (and non-

split-phase synchronisations) [31, 33]; and by UPC, which is restricted to global synchronisations.

X10 supports distributed barriers as a key language feature, but without any facility for deadlock

detection.

2.3 Generalised Barrier Synchronisation using Phasers

Phasers [8, 62] are a generalisation of barriers. The main feature of phasers is that member tasks

may independently progress ahead to a future barrier step (i.e., phase) without synchronising (i.e.,
waiting for their co-members) on the intermediate steps. Phasers may also support certain usages

by non-member tasks.

In this work, we introduce a core language for phaser-coordinated concurrent systems that distils

the key functionality of phasers:

• A phaser records the phase, an integer n ≥ 0, reached by each member task.

• A non-blocking arrv operation on a phaser increments the phase of the calling task. Any

member task may thus independently advance up to an arbitrary phase.

• A separate, optional await operation on a phaser blocks the calling task at its current phase

until every member task has reached this phase.

• Explicit dynamic membership: tasks are registered and deregistered with a phaser by, and

only by, reg and dereg operations.

We develop the deadlock verification of Armus on this basis of this core phaser functionality,

which subsumes all of the barrier features summarised in Section 2.2 (Table 1). Armus is thus

applicable to all of the languages and libraries discussed there, and to any other barrier system

whose functionality can be encoded into these operations.
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Listing 2. An asynchronous linear producer-consumer pipeline in a pseudo X10 extended with Armus phaser

operations (Example 2.4).

1 // Pre: "ph" is an array of length #num_tasks of new phasers

2 for (i in 0..(num_tasks-1)) {

3 val id = i;

4 val local = ph(id);

5 val pred = ph((id-1+num_tasks)%num_tasks); // Preceding pipeline task's phaser

6 async phased(local, pred) { // Spawned task is registered to these two phasers

7 for (j = 1; j <= num_steps; j++) {

8 if (id > 0) {

9 arrv(pred)

10 await(pred); // Await next item from preceding task

11 }

12 step(id, j); // Consume preceding task's next item and/or..

13 // ..produce next local item as appropriate

14 if (id < num_tasks-1) {

15 arrv(local); // Signal item is ready

16 }

17 } } }

18 // Result: every task except #0 has awaited #num_steps on preceding task's phaser,

19 // every task except #num_tasks-1 has arrived #num_steps on its local phaser

Producer-Consumer. A primary motivation for phasers is to support asynchronous producer-

consumer patterns [14, 64] that cannot be expressed using the barrier features discussed in Sec-

tion 2.2. Such synchronisation patterns occur in programs performing streaming (also known as

data-flow) communication among tasks [54, 60, 63]. A typical producer-consumer application using

phasers correlates each phase to the production of one item: a producer task arrives at the next

phase after producing an item, while consumer tasks arrive and await the phases in sequence. The

ability to advance its local phase without awaiting allows the producer to proceed ahead of the

consumers, and similarly allows different consumers to progress at different rates. By contrast, a

clocked production stream using, e.g., basic cyclic barriers, would require the producer and every

consumer to synchronise on every item.

Example 2.4. This example is extracted from the LU (Lower-Upper symmetric Gauss-Seidel)

benchmark of the NAS Parallel Benchmark (NPB) suite [24] (see Section 7), originally written in

Java using condition variables.
10
Listing 2 adapts the example to phasers, which we write in an

X10-based pseudo code (for readability) extended with the Armus arrv and await operations.
The child tasks spawned by the async are organised to form a linear pipeline of tasks consuming

from one neighbour and producing to the other. Each task is associated with a phaser, stored in

an array ph, that counts the number of items it has produced locally. Each task, except the first

(0-th), awaits the next phase of the preceding task’s phaser (to consume the next available item).

Each task, except the last, then asynchronously advances its local phaser (after producing the next

item) without waiting. (The details of item production and consumption and any additional work

performed by the step method are omitted for brevity.)

10
The limited java.util.concurrent.Phaser implementation of phasers supports split-phase synchronisations, but not

the fully unrestricted phase advancing required for asynchronous producer-consumer.
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1 // t4
2 arrv(a);

3 arrv(a);

4 arrv(a);

5 await(a); // a3 ×

6 arrv(b);

7 await(b); // b1

8

1 // t5
2 arrv(a);

3 await(a); // a1

4 arrv(b);

5 await(b); // b1 ×

6 arrv(a);

7 arrv(a);

8 await(a);

t4

a3

t5

b1

(a) phaser code (b) Task-Event Graph

Fig. 2. A phaser deadlock.

Incorrect manipulation of task indexes (a typical programming error) in the conditional expres-

sions before and after step can easily give rise to deadlock; e.g., if any task (except the last) does

not advance its phaser, or if the first task cyclically waits on the last task’s phaser.

The functionality of phasers modelled in Armus subsumes the previously discussed barrier

features as follows. Dynamic membership is supported by the explicit per-task registration and

deregistration operations, which in turn supports group synchronisation by allowing an arbitrary

subset of tasks to be registered to any given phaser. Split-phase synchronisation is subsumed as the

special case of phaser usage where, for each member task, an arrv on phaser p is always followed

by an await on p before any subsequent arrv on p; i.e., the discrepancy between the phases of the

most and least advanced member tasks of a phaser is bounded to a maximum of one.

2.4 Dynamic Deadlock Verification for Phasers

We conclude this section by outlining the phaser-based approach of Armus to barrier-deadlock

verification. The challenge of deadlock verification for phasers is that tasks may participate in

synchronisations on a phaser only at selected phases. Section 2.2 outlined WFG-based deadlock

detection for basic barriers (i.e., barriers that require all member tasks must synchronise on every

step). Considered simply, such approaches are unsuitable for phasers because they are based on

capturing inter-task control flow dependencies at the granularity of barriers as synchronisation
resources.

1 // t1
2 arrv(a);

3 arrv(a);

4 await(a); ←

5 arrv(b);

6 await(b);

1 // t2
2 arrv(a);

3 arrv(a);

4 arrv(b);

5 await(b); ←

6

1 // t3
2 arrv(a);←

3 arrv(a);

4 arrv(b);

5

6

In the above deadlock-free phaser code, all three tasks, t1, t2 and t3, are registered to both phasers,

a and b, and execution has reach the state indicated in each task: t1 and t2 are blocked, but not t3.
Naive application of a basic WFG-based approach (i.e., building task-to-task wait-for dependencies

by treating phasers as standard cyclic barriers) to this system would result in a false positive: a
cycle arises because t1 is blocked on a which t2 is a member of, and t2 is blocked on b which t1 is a
member of. The problem is that the construction of this false cycle involving two tasks and two

phasers is insensitive to the fact that there are actually three phases in play.
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On the other hand, bad asynchronous phase advancing patterns can easily give rise to deadlocks,

as illustrated in Figure 2 (a). Both t4 and t5 will await on a, then await on b. However, t5 blocks on
its first phase of b after arriving at its first phase on a, but without arriving at its second or third

phases on a—which t4 requires in order to progress to the arrive at its first phase on b.

Armus: Task-Event Graphs. Our approach is based on modelling the concurrency constraints

of phaser systems at the granularity of phases. The intuition is that the operations performed by

tasks on any given phaser induces an ordered series of phase synchronisation events on that phaser.

(We may refer to phase synchronisation events as phase events, or simply events.) More specifically,

a task may be related to a phase event because it is waiting on the event, i.e., to participate in

the synchronisation on this phase; or because the event is being impeded by the task, i.e., the
synchronisation event cannot occur because the task has not reached this phase.

Armus introduces a Task-Event Graph (TEG) model that can be considered as adapting traditional

Task-Resource Graph models [61] to phaser systems by treating each phase event as a distinct

temporal synchronisation resource. The resulting model is a bipartite graph of task and event nodes

with the following key characteristics:

• A TEG models separate task wait-on event, and event impede-by task, relations.

• The impede-by relation incorporates a notion of phase-transitivity induced by event ordering:

an event is inherently impeded by a task, if the task is associated with another event at any

earlier phase on the same phaser.

As a preliminary example, Figure 2 (b) depicts the TEG for the deadlock situation of Figure 2 (a).

The notation, e.g., a3 means phase 3 on phaser a. The solid edges (t4,a
3) and (t5,b

1) are given

by the wait-on relation, and (a3, t5) and the dashed edges (b1, t4) by the impeded-by relation. We

can explain the (a3, t5) edge by because (i) there is a task waiting on a3 (in this case t4), and (ii)

and task t5 is waiting on b1 while having only reached a phase that precedes a3 (in this case t5
reached a1).
In Sections 3 to 5, we formalise the Armus phaser language and dynamic deadlock verifica-

tion methodology, and show that the verification is sound and complete. Section 6 discusses our

implementations of Armus for X10 and Java.

3 A CORE PHASER-BASED LANGUAGE FOR GENERAL BARRIER

SYNCHRONISATIONS

This section introduces the syntax and semantics of a core concurrent language with phasers,

which we refer to as Brenner. The language is designed to express abstractions of concurrent,

imperative barrier programs, sufficient to formalise our deadlock verification and show the verifi-

cation properties. The main purposes of the formalism are to define the information required of a

phaser system to characterise a deadlock, namely the state of the data structure underlying each

phaser and the set of blocked tasks, and to model how the phaser operations act on this information.

Since the run-time verification approach of Armus works by sampling the state of phasers and

blocked tasks during program execution, the correctness of the deadlock analysis is independent of

control flow mechanisms. Language constructs that do not directly affect barrier synchronisation

are omitted, such as local data operations, or simplified, e.g., looping constructs are abstracted as a

non-deterministic loop statement.

3.1 Brenner: A Core Phaser-Based Language

Phasers. We first formalise the core functionality of phasers. Let P denote a phaser that maps task
names t , t ′, . . . ∈ T to local phases, ranging over the natural numbers, n ∈ N . Predicate await(P ,n),
used by tasks to observe a phase event, holds iff every member of the phaser has a local phase of at
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Phasers
∃t ′ : P(t ′) ≤ n

P
reg(t,n)
−−−−−−→ P ⊎ {t : n}

[add]

P ⊎ {t : n}
dereg(t )
−−−−−−→ P [drop]

P ⊎ {t : n}
arrv(t )
−−−−−→ P ⊎ {t : n + 1} [adv]

Phaser maps

M
p :=P
−−−→ M ⊎ {p : P} [add-p]

P
ϕ
−→ P ′

M ⊎ {p : P}
p .ϕ
−−−→ M ⊎ {p : P ′}

[upd]

Instructions

skip; s −→ s [skip]

s ′ = c1; ..; cn ; end

loop s ′; s −→ c1; ..; cn ; (loop s ′; s)
[i-loop]

loop s ′; s −→ s [e-loop]

States
t ′′ < fv(s)

(M,T ⊎ {t ′ : t = newTid(); s}) −→ (M,T ⊎ {t ′ : s[t ′′/t]} ⊎ {t ′′ : end})
[new-t]

(M,T ⊎ {t ′ : fork(t) s; s ′} ⊎ {t : end}) −→ (M,T ⊎ {t ′ : s ′} ⊎ {t : s}) [fork]

M
q:=P
−−−→ M ′ P = {t : 0} q < fv(s)

(M,T ⊎ {t : p = newPhaser(); s}) −→ (M ′,T ⊎ {t : s[q/p]})
[new-p]

M(p)(t ′) = n M
p .reg(t,n)
−−−−−−−→ M ′

(M,T ⊎ {t ′ : reg(t ,p); s}) −→ (M ′,T ⊎ {t ′ : s})
[reg]

M
p .dereg(t )
−−−−−−−→ M ′

(M,T ⊎ {t : dereg(p); s}) −→ (M ′,T ⊎ {t : s})
[dereg]

M
p .arrv(t )
−−−−−−→ M ′

(M,T ⊎ {t : arrv(p); s}) −→ (M ′,T ⊎ {t : s})
[arrv]

M(p) = P await(P ,n)

(M,T ⊎ {t : await(p,n); s}) −→ (M,T ⊎ {t : s})
[await-n]

M(p)(t) = n (M,T ⊎ {t : await(p,n); s}) −→ (M,T ′)

(M,T ⊎ {t : await(p); s}) −→ (M,T ′)
[await]

s −→ s ′

(M,T ⊎ {t : s}) −→ (M,T ⊎ {t : s ′})
[c-flow]

Fig. 3. Operational semantics of Brenner.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:14 Tiago Cogumbreiro, Raymond Hu, Francisco Martins, and Nobuko Yoshida

Listing 3. The Brenner representation of the X10 example in Listing 1.

1 // Body of the main (parent) task t0:

2 pc = newPhaser(); // X10 clock (cyclic barrier), parent task implicitly registered

3 pf = newPhaser(); // X10 finish (join barrier), parent task implicitly registered

4 loop

5 t = newTid(); // Child task

6 reg(pf , t); reg(pc, t); // X10: (implicit) finish reg, (explicit) clock reg

7 fork(t)

8 loop

9 skip;

10 arrv(pc); await(pc); // clock advance ×

11 skip;

12 arrv(pc); await(pc); // clock advance

13 end;

14 dereg(pc); // X10 task termination..

15 dereg(pf ); // ..deregisters the task from all barriers

16 end;

17 end;

18 arrv(pf ); await(pf ); // finish synchronisation ×

19 dereg(pf ); // finish statement exit

20 end

least n:

await(P ,n)
def

= ∀t ∈ dom(P) : P(t) ≥ n

For a map X , we write dom(X ) for the domain of X , and img(X ) for the image of X . When

X ∩ Y = ∅ for some map Y , we write X ⊎ Y for the disjoint union of X and Y .
Three atomic operations ϕ mutate a phaser, as defined by “Phasers” in Figure 3. reg(t ,n) registers

a task named t to phaser P with initial phase n, provided that the task is not already a member.

dereg(t) removes the calling task t from the membership of P . arrv(t) increments the local phase

of t in P .
Let a phaser map M be a map from phasers names p,p ′, . . . ∈ P to phasers, used to record all the

phasers in a system. There are two operators o on phaser maps: p := P names the new phaser P
with a global name p, and p.ϕ updates the phaser named p according to ϕ.

Syntax. Brenner abstracts a user-level program as a sequence s of instructions c , generated by

the grammar:

s ::= c; s | end

c ::= t = newTid() | fork(t) s | loop s | skip

| p = newPhaser() | reg(t ,p) | dereg(p) | arrv(p) | await(p) | await(p,n)

Operational semantics. The reduction of Brenner terms is defined by “Instructions” and “States”

in Figure 3. A task map T maps task names ti to instruction sequences si , representing the current

state of the running tasks. A system state, or simply state, is a pair S ::=(M,T ).
We explain the syntax and operational semantics through Listing 3, which gives the Brenner

representation of the X10 example from Listing 1. Spawning a new task comprises two instructions:
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create a fresh task name bound as t by newTid (e.g., Line 5), and fork a task with this name to perform

instruction sequence s by fork(t) s (e.g., Lines 7 to 16). The former adds a dummy (non-executable)

task as a placeholder in the task map, to reserve the name t until the latter occurs.
Regarding task membership, newPhaser creates a phaser and registers the current task at phase

zero. Rule [reg], with reg(p, t), lets some task t ′ register a new task t with phaser p. Task t ′ must be

registered with p, and t inherits the phase of t ′;11 rule [add] enforces that t is not already a member

of p. Additionally, condition P(t ′) ≤ n guarantees that there is some task, trivially the caller t ′, that
is registered on phase n, so as to ensure that phaser synchronisation is deterministic—observing a

phase must be a stable property; otherwise, there would be no way to know when synchronisation

happened, as new participants could be introduced in past phases. Operation dereg(p) deregisters
the current task from phaser p. In the example, the parent task creates a phaser representing the

X10 join barrier pf in Line 3, and registers child tasks t to pf in Line 6, which deregister from pf to

signal task termination in Line 15.

For synchronisation, arrv(p) is the non-blocking operation for the current task to arrive at its

next local phase, and await(p) blocks the current task t until await(P ,n), where n is the local phase

of t on P , the phaser named p. In the inner loop of the example (Lines 10 to 12), each child task

advances its phase and then awaits the others to do the same. The variant await(p,n) takes n as an

explicit argument and does not require t to be registered to p, which captures use cases such as the

wait-only phaser “registration” mode of HJ [62].
12

Lastly, the structural rule for control flow is standard. In Brenner, local data operations are

abstracted as skip, and the non-deterministic loop, which unfolds its body an arbitrary number

of times (possibly zero), is used to subsume the control flow of standard conditional branches,

while-loops and so on.

With respect to the dynamic deadlock verification, rules [await] and [await-n] are used to define

the notion of blocked tasks, in order to characterise deadlocked states (Section 3.2) and establish

the results in Section 5. Second, the operational semantics as whole serves as a specification of

how phaser system state should be maintained by an implementation of Armus verification (or

conversely, a specification of the phaser systems to which an implementation of Armus applies), as

we discuss for X10 and Java in Section 6.2.

3.2 Phaser Deadlocks

A phase event e , or simply event, is a pair (p,n), which may be written as pn . The ordering of phase

events on a phaser is given by the precedes relation on events, e ≺ e ′:

n < m

(p,n) ≺ (p,m)

Given a state S = (M,T ), a task t ∈ T and an event e = (p,n),p ∈ dom(M), we define:

• t is waiting on on e , notation twait-onS e , iff t is awaiting phase n on p. That is, there exists s
such that T (t) = await(p,n); s , or T (t) = await(p); s andM(p)(t) = n. In such cases, we also

simply say t is awaiting.
• t is associated with e , notation t assocS e , iffM(p)(t) = n.
• e is impeded by t , notation e impede-byS t , iff t assocS e

′
such that e ′ ≺ e and there exists a

task t ′ where t ′ wait-onS e . In such a case, we also simply say e is impeded.
Given an S , we will write simplywait-onS to denote the set of all (t , e) pairs such that twait-onS e ;
similarly for impede-byS .

11
Phase inheritance subsumes the X10 notion of child tasks inheriting the “initiation status” of split-phase synchronisations.

12
In HJ, wait-only registration is a special case where the task is implicitly assigned a local phase of∞ and is not permitted

to arrive on the phaser. In Armus, this is modelled as allowing non-member tasks to await (but not arrive) on a phaser.
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An e impeded by t relationship, where e = (p,n), signifies that t has a strictly earlier local phase

on p than n, and is thus required to perform some action, namely either at least one arrv(p) or a
dereg(p), before e can be successfully observed by any awaiting task. Moreover, there is at least

one such task t ′ awaiting e , which ensures that the impede-by relation is finite. Note that, while a

task may be waiting on at most one event, an event may be impeded by multiple tasks.

Unlike the wait-for relation in WFG-oriented approaches, neither wait-on nor impede-by inher-

ently capture any notion of a task being stuck in of themselves. Instead, we naturally characterise

phaser deadlock based on mutual dependencies between the two relations as follows. We define

deadlocked states (i.e., local deadlock, as discussed in Section 2.2) based on totally deadlocked states
(global deadlock). A totally deadlocked state occurs when every task is waiting-on some event and

the event is impeded by some task.

Definition 3.1 (Totally deadlocked state). A state (M,T ) is totally deadlocked iff T , ∅ and ∀t ∈
dom(T ).∃e ∈ dom(M) × N .(t wait-onS e ∧ e is impeded).

A totally deadlocked state extended with tasks that are not awaiting impeded events is considered

as simply deadlocked, as the systemmay still potentially progress by the reduction of these additional

tasks.

Definition 3.2 (Deadlocked state). A state S = (M,T ⊎T ′) is deadlocked on T iff the state (M,T ) is
totally deadlocked. In such a case, we also simply say S is deadlocked.

The notion of local deadlocks is crucial for applications that may never terminate (typical

examples being operating systems and persistent network services), and practically important for

systems that may simply be long running.

4 DYNAMIC DEADLOCK VERIFICATION FOR PHASERS

This section first defines the construction of Task-Event Graphs (TEGs) from Brenner system states.

Second, by starting from a more general model oriented to TEGs (as opposed to a directly WFG-

oriented approach), we are able to recover smaller but equivalent representations as optimisations,

with respect to the verification properties (Section 5). These are the WFG, and the counterpart

notion of State Graph (SG).

4.1 Task-Event Graphs

Background. A Task-Resource Graph (TRG) [61], also known as Transaction-Resource Graph, is a
bipartite directed graph used to model concurrency constraints between tasks and resources. We

adapt this term as Task-Event Graph (TEG) in Armus, since we model the concurrency constraints

arising from tasks observing transient phase events by collective synchronisation operations, as

opposed to individual acquisition and release actions on “concrete” resources.

Holt generalised TRGs to General Resource Graphs (GRG) [35], by augmenting resource-nodes

with the number of available resources. Unlike TEGs, a GRG cycle does not necessarily imply

deadlock. The GRG must first be transformed a finite number of steps to identify a potential

deadlock. Non-bipartite directed graphs of tasks and synchronisation mechanisms have also been

used to detect lock-based deadlocks [52].

Coffman et al. introduced the State Graph (SG) [12] to model concurrency constraints directly be-

tween synchronisation mechanisms. State-of-the-art on identifying potential lock-based deadlocks

includes approaches based on SGs [7, 23, 58], where SGs also known as Lock-Order Graphs and

Lock-Dependency Graphs. SGs have also been used to infer deadlock-free contracts for concurrency

libraries [21].

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Dynamic Deadlock Verification for General Barrier Synchronisation 1:17

Knapp introduced theWait-For Graph (WFGs) [40] to model concurrency constraints directly

between tasks. As discussed earlier, variations of WFGs are used in the state-of-the-art on deadlock

detection for distributed message passing and (static membership) barriers [34, 37].

Basic concepts from graph theory. A (directed) graph G is a pair (V ,A) comprising a nonempty

finite set of vertices V , ranged over by v,u, and a finite set of arcs A, ranged over by a,b, c , where
an arc a is a pair (v,u) with v,u ∈ V . An arc (v,u) is directed from its head v to its tail u. We

write a ∈ G to mean G = (V ,A) and a ∈ A. Graph (U ,B) is a subgraph of graph (V ,A) iff U ⊆ V
and B ⊆ A.

A walk w on (V ,A) is a (possibly empty) sequence a1 · · ·an (also written a1..n ) of arcs in A such

that, for all i < n, ai = (vi ,vi+1) and ai+1 = (vi+1,vi+2). We write ϵ to denote the walk of length

zero and a::w to prepend edge a to walkw . For instance, walk (v1,v2)::(v2,v3)::ϵ is an alternative

notation for walk (v1,v2) · (v2,v3).
We write a ∈ w to mean w = a1..n , where there exists i ∈ {1, . . . ,n} and a = ai ; and v ∈ w

to mean there exists (v1,v2) ∈ w and v ∈ {v1,v2}. We have that v2 ∈ (v1,v2) · (v2,v3) and that

(v2,v3) ∈ (v1,v2) · (v2,v3) , yet v4 < (v1,v2) · (v2,v3) and that (v5,v5) < (v1,v2) · (v2,v3).
We may write a walk by its constituent vertices, i.e., (v1,v2) · (v2,v3) · · · (vn−1,vn) abbreviated as

v1 ·v2 · · ·vn−1 ·vn . For instance, walkv1 ·v2 ·v3 is an alternative notation for walk (v1,v2) · (v2,v3).
We may also simply refer to a walk by its first and last vertices, i.e., a v1-vn walk means a

nonempty walk v1 · · ·vn . Given a walkw = a1 · · · · · an such that n ≥ 1, we have that an is the last

arc of walkw . A cycle is a v-v walk—note that cycles are nonempty walks.

A bipartite graph G = (V ,U ,A) is a graph (V ∪U ,A) where V and U are disjoint and, for all

a ∈ A, a = (v,u) or a = (u,v) with v ∈ V and u ∈ U .

Task-Event Graphs. A Task-Event Graph (TEG) is a bipartite graph where the two disjoint sets of

vertices are task names t ∈ T and events e ∈ P × N . A TEG thus has two kinds of arcs: wait-on
arcs (t , e) directed from a task t to an event e , and impede-by arcs (e, t) from an event e to a task t .

Definition 4.1 (Associated TEG). Given a state S , letW = wait-onS and I = impede-byS . The

TEG associated with S , teg (S), is the bipartite graph (U ,U ′,A), where U = dom(W ) ∪ img(I ),
U ′ = img(I ) ∪ dom(W ) and A =W ∪ I .

Example 4.1. Figure 4 involves three tasks and two phasers. Execution (necessarily) reaches the

totally deadlocked state S indicated in the code, where (assuming the terminated main task named

t0):

S = (M,T ) M = {p : {t1 : 2, t2 : 0, t3 : 1},q : {t1 : 0, t2 : 1}}

T = {t0 : end, t1 : await(p); arrv(q); await(q); end,

t2 : await(q); arrv(p); await(p); end, t3 : await(p); arrv(p); await(p); end}

Then teg (S) = ({t1, t2, t3}, {p
1,p2,q1},wait-onS ∪ impede-byS ), where:

wait-onS = {(t1,p
2), (t2,q

1), (t3,p
1)} (Solid edges)

assocS = {(t1,p
2), (t1,q

0), (t2,p
0), (t2,q

1), (t3,p
1)}

impede-byS = {(p1, t2), (q
1, t1), (p

2, t2), (p
2, t3)} (Dashed edges)

Note that this example features two deadlock cycles. Although there are only two phasers, their

usage by the tasks induces three distinct events, leading to the cycle t1 · p
2 · t3 · p

1 · t2 · q
1 · t1. The

smaller cycle, t1 · p
2 · t2 · q

1 · t1, corresponds to a local deadlock in an intermediate situation where

t1 and t2 have blocked but t3 has not. The two cycles arise from t2 impeding both p events under

observation: t2 is associated with p0, thus impeding p1 and p2.
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1 p = newPhaser(); q = newPhaser();

2 t1 = newTid(); reg(t1, p); reg(t1, q);

3 t2 = newTid(); reg(t2, p); reg(t2, q);

4 t3 = newTid(); reg(t3, p);

5 fork(t1) arrv(p); arrv(p); await(p); // p2 ×

6 arrv(q); await(q); // q1

7 end;

8 fork(t2) arrv(q); await(q); // q1 ×

9 arrv(p); await(p); // p1

10 end;

11 fork(t3) arrv(p); await(p); // p1 ×

12 arrv(p); await(p); // p2

13 end;

14 dereg(p); dereg(q);

15 end

t1

q1

t2

p2

p1

t3

(a) phaser code (deadlock state as indicated) (b) TEG

Fig. 4. A (totally) deadlocked phaser program (Example 4.1).

1 p = newPhaser();

2 t1 = newTid(); reg(t1, p);

3 t2 = newTid(); reg(t2, p);

4 fork(t1) await(p, 1); end; // ×

5 fork(t2) arrv(p); await(p); end;

6 dereg(p);

7 end

t1 p1 t2

(a) phaser code (b) TEG

Fig. 5. Deadlock by awaiting incorrectly on a future phase (Example 4.2).

Example 4.2. Figure 5 demonstrates a deadlock due to a single task awaiting a future phase (i.e.,
a phase ahead of its local phase) on a phaser that it is registered to. In such cases, the relevant

impede-by dependency is inherent from the impeding task being the same as the observing task:

t1 is associated with p0, impeding p1 which t1 is itself waiting on. This (anti-)pattern thus causes

deadlock in any system context.

The feature of awaiting “future” phases can be used by unregistered tasks (e.g., wait-only con-

sumers), for which this is technically the same as awaiting any arbitrary phase (since such tasks

do not actually have a local phase on the phaser). Then there is no issue of deadlock because the

associated-events predicate does not hold between such tasks and the observed events.

4.2 Deriving Wait-For Graphs and State Graphs from Task-Event Graphs

We can compress a bipartite TEG to a smaller model by vertex contraction: contracting the event

vertices results in a Wait-for Graph (WFG), and contracting the task vertices results in a State

Graph (SG).

Definition 4.2 (Associated WFG, SG). Assume a state S and its associated TEG, teg (S) = (U ,U ′,A).
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t1 t2 t3 t0

p1c

p1f

(a) TEG

t1 t2 t3 t0

(b) WFG

t0

p1c

p1f

(c) SG

Fig. 6. Concurrency constraint graphs associated with state S in Example 4.3.

• The WFG associated with S , wfg (S), is the graph (U ,A′) where A′ = {(t , t ′) | ∃e ∈ U ′.(t , e) ∈
A ∧ (e, t ′) ∈ A}.
• The SG associated with S , sg (S), is the graph (U ′,A′) where A′ = {(e, e ′) | ∃t ∈ U .(e, t) ∈
A ∧ (t , e ′) ∈ A}.

Example 4.3. Consider the following deadlocked state S = (M,T ) of the running example from

Listings 1 and 3, taking num tasks to be 3. Tasks t1, t2, and t3 are the child tasks waiting on the

cyclic barrier (clock) pc , and the main (parent) task t0 is waiting on the join barrier (finish) pf .

M =
{
pc: {t1 : 1, t2 : 1, t3 : 1, t0 : 0}, pf : {t1 : 0, t2 : 0, t3 : 0, t0 : 1}

}
,

T = {t0 : await(pf ); s0, t1 : await(pc ); s1, t2 : await(pc ); s2, t3 : await(pc ); s3}

(We omit the continuations s0..4 for brevity.) Consequently, wait-onS and impede-byS are, respec-

tively:

{(t0,p
1

f ), (t1,p
1

c ), (t2,p
1

c ), (t3,p
1

c )} {(p1c , t0), (p
1

f , t1), (p
1

f , t2), (p
1

f , t3)}

Figure 6 depicts the TEG associated with S , and by contraction the associated WFG and SG.

Dynamic graph model selection. A benefit of our approach is that the deadlock detection can be

optimised by dynamically selecting between a WFG or SG model as appropriate. The selection can

be guided by the cost of cycle detection. The following is the worst-case time complexity for using

the WFG and the SG.

Proposition 4.4 (time complexity). Given a state S , letW stand for wait-onS and I stand for
impede-byS . Deadlock detection using the associated WFG is O(|W |2 + |W |), while deadlock detection
using the SG associated with is O(|I |2 + |I |).

Proof. Cycle detection in a graph (V ,A) has a time complexity of O(|A| + |V |) [66]. For any
graph, |A| ≤ |V |2 [4], thus we can bound the complexity by O(|V |2 + |V |). Since the WFG vertices

are the tasks, deadlock detection using the WFG with |W | tasks has a complexity of O(|W |2 + |W |).
Similarly for the SG, we have O(|I |2 + |I |). □

Based on this observation, we can expect the WFG or the SG to be more efficient than the other

based on the ratio of tasks to synchronisation events in the run-time system. Some of the scenarios

for each case are as follows.

WFGs are suitable when events outnumber tasks, which we may expect in situations where

barriers are used to represent resources and the means to regulate their access. Such situations

arise in dataflow/stream processing [64, 64, 71], and applications such as clocked variables [2]. This

characteristic is further pronounced in applications of asynchronous phase advancing that relate
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events to resources, as in producer-consumer patterns, where a potentially large number of events

may arise from even a small number of phasers and tasks.

By contrast, we may expect SGs to be suitable, due to tasks outnumbering events, in settings

where parallelism is based on the scaling of tasks, such as single program, multiple data (SPMD)

systems, e.g., using MPI or OpenMP, and phaser accumulators [63].

Ultimately, we expect that the ratio of tasks to events may be difficult to predict in many barrier

applications, with the potential for significant variance during execution, motivating an approach to

dynamic graph model selection. Such situations may arise in advanced languages such as X10, that

support ad hoc combined use of multiple forms of barrier abstractions, and other hybrid systems,

such as combinations of MPI and OpenMP.

Section 7.3 evaluates the performance impact of dynamic graph model selection in practice. The

results – especially those for deadlock avoidance – confirm the above remarks, namely that the

WFG is indeed more efficient in programs where events outnumber tasks, and vice versa for SG.

We also note that in every benchmark application except for the simplest one (named SE), using

the TEG directly (as a base case comparison) is always slower than using the best option out of

WFG or SG.

5 DEADLOCK VERIFICATION PROPERTIES

This section presents correctness properties of phaser deadlock verification in Armus. First, we

show that the WFG and the SG associated with a state S are equivalent with respect to the presence

of cycles. Second, we show that deadlock detection for a state S by cycle detection in the associated

WFG is sound and complete, i.e., the WFG contains a cycle if, and only if, S is deadlocked. The

definitions and proofs are available as a machine-checked Coq implementation.
13

5.1 Model-Equivalence Theorem

In this section we show that a state S , whenever there is a cycle in the associated WFG, there is also

a cycle in the associated SG, and vice versa. Precisely, given a state S and a cycle in the associated

WFG, from v1 to v1, we can construct a path in the associated SG from u1 to un , as depicted in the

next graph, where the dotted arcs are in the WFG, the solid and the dashed arcs are both in the

TEG, and the squiggly arcs are in the SG. From the edges (v1,u1) and (un ,v1), we show that the

edge (un ,u1), not depicted below, is an edge in the SG, and therefore there is a cycle in the SG that

passes through u1.

v1 v2 v3
. . . v1

u1 u2 . . . un

The equivalence of finding a cycle in the WFG and SG can be stated generally for any bipartite

graph.

Definition 5.1 (Contracted graph). Let G = (V ,U ,A) be a bipartite digraph. Let the contraction
of G into GV = (V ,AV ) where AV is defined as (v1,v2) ∈ AV if, and only if, ∃u ∈ U such that

(v1,u) ∈ A and (u,v2) ∈ A. Similarly, let the contraction ofG intoGU = (U ,AU )whereAU is defined

as (u1,u2) ∈ AU if, and only if, ∃v ∈ V such that (u1,v) ∈ A and (v,u2) ∈ A. We call a ∈ GV aV -arc,

and a ∈ GU aU -arc. Similarly, we callw ∈ GV a V -walk, andw ∈ GU aU -walk.

13
https://gitlab.com/cogumbreiro/brenner-coq
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Henceforth until the end of the section, let v denote a vertex such that v ∈ V and let u denote a

vertex such that u ∈ U . In a bipartite graph’s contraction GV , any path with three vertices can be

“translated” into a path in GU that only has two vertices (i.e., aU -arc).

Definition 5.2. Let (v1,v2) ⌣ (v2,v3) ⌢G (u1,u2) hold if the arcs (v1,u1), (u1,v2), (v2,u2), and
(u2,v3) are all in G.

It follows trivially that (v1,v2), (v2,v3) are arcs in GV and that (u1,u2) is an arc in GU . The next

graph depicts proposition (v1,v2)⌣ (v2,v3)⌢G (u1,u2).

v1 v2 v3

u1 u2

Now letw ⌢G w ′ relate a V -walkw with aU -walkw ′.

Definition 5.3 (Walk contraction). Let G = (V ,U ,A) be a bipartite digraph. Let w ⌢G w ′ be
defined inductively as:

ϵ ⌢G ϵ a ⌢G ϵ

a1 ⌣ a2 ⌢G b (a2::w1)⌢G w2

(a1::a2::w1)⌢G (b::w2)

Lemma 5.4. Let G = (V ,U ,A) be a bipartite graph. Ifw is a V -walk, then there exists a U -walkw ′

such thatw ⌢G w ′.

Proof. The proof follows by induction on the structure ofw . There are two cases to consider.

The first case is whenw = ϵ ; the proof follows trivially takingw ′ = ϵ . By definition we have that ϵ
is a U -walk and that ϵ ⌢G ϵ holds. The second case is whenw = a::w1 and we want to show that

there is some U -walkw ′ such that a::w1 ⌢G w ′. By inspecting the structure ofw1, we have two

further sub-cases to analyse: (a) eitherw1 is ϵ , or (b) a = (v1,v2) andw1 = (v2,v3)::w2.

(a) We conclude the proof of this sub-case with w ′ = ϵ , since by definition ϵ is a U -walk and

a::ϵ ⌢G ϵ holds.

(b) By applying the induction hypothesis to w2 is a V -walk, we get that there is some U -

walk w ′′ such that (v2,v3)::w2 ⌢G w ′′. The sub-case concludes by showing that given

a V -walk (v1,v2)::(v2,v3)::w2, a U -walk w ′′, and (v2,v3)::w2 ⌢G w ′′, then there exists

someU -walkw ′ such that (v1,v2)::(v2,v3)::w2 ⌢G w ′ holds. The proof follows by inverting
the proposition (v2,v3)::w2 ⌢G w ′′, which can be proved from knowing that for every path

V -walk v1 · v2 · v3 there exists aU -walk u1 · u2 such that v1 · v2 · v3 ⌢G u1 · u2.

(The Coq version of this lemma is named a to b total, in aniceto-coq/src/Graphs/Cycle.v)
□

Lemma 5.5. Let G = (V ,U ,A) be a bipartite graph. If (u1,u2) is the last arc of U -walk w ′ and
w ⌢G w ′, then there exist a V -walk v1 · v2 · v3 such that v1 · v2 · v3 ⌢G u1 · u2.

Proof. The proof follows by induction on the derivation tree ofw ⌢G w ′. Inverting proposition
w ⌢G w ′, we get three cases to consider: (i) w = w ′ = ϵ ; (ii) w = (v1,v2) and w ′ = ϵ ; and (iii)

w = (v1,v2)::(v2,v3)::w1,w
′ = a::w2, and (v2,v3)::w1 ⌢G (u1,u2)::w2.

We conclude cases (i) and (ii) with the same proof. By hypothesis (u1,u2) is the last arc of w
′
,

thus (u1,u2) ∈ w
′
; however,w ′ = ϵ , and therefore (u1,u2) ∈ ϵ , which cannot be by definition of arc

membership.

As for case (iii), we inspect the structure ofw2 and get two further sub-cases: (a)w2 = ϵ and (b)

w2 = (u2,u3)::w3.
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(a) At this point w ′ = a::ϵ and therefore a = (u1,u2). We can now conclude by applying the

hypothesis (v2,v3)::w1 ⌢G (u1,u2)::ϵ .
(b) Recall we want to show that there exist a V -walk v1 · v2 · v3 such that v1 · v2 · v3 ⌢G u1 · u2.

Since we know that (u1,v2) is the last arc of a::(u2,u3)::w3, then arc (u1,v2) is also the last

of walk (u2,u3)::w3. Thus, we apply the induction hypothesis to conclude our proof.

(The Coq version of this lemma is named a to b end, in aniceto-coq/src/Graphs/Cycle.v) □

Lemma 5.6. Let G = (V ,U ,A) be a bipartite graph. If the V -walkw is a cycle, then there exists a
U -walkw ′ that is a cycle.

Proof. Applying Lemma 5.4 to our hypothesis we get that there exists a U -walkw ′ such that

w ⌢G w ′ holds. By inverting the latter there are two cases to consider: (a) w = (v,v)::ϵ ; and
(b)w = a1::w1 andw

′ = a2::w2.

Case (a) there exists a vertex u such that we have (v,u) ∈ A and (u,v) ∈ A. We conclude the

proof since (u,u) is a cycle in theU -graph.

Case (b) since,w is a cycle, letw = (v1,v2)::w1 and (vn ,v1) be the last arc ofw , when a1 = (v1,v2).
Applying Lemma 5.5 to the hypothesis that (vn ,v1) is the last arc ofw , we get: vn−1 · vn · v1 ⌢G
un−1 · un . We illustrate the two paths bellow.

v1
. . . vn−1 vn v1

u1 . . . un−1 un

From (un ,v1) ∈ A and (v1,u1) ∈ A we get that (un ,u1) is an edge in GU , thus

u1 . . . un−1 un

(The Coq version of this lemma is named cycle a to b, in aniceto-coq/src/Graphs/Cycle.v)
□

Corollary 5.7. There exists a cyclew on graph wfg (S) if, and only if, there exists a cyclew ′ on
graph sg (S).

Proof. We apply Lemma 5.6 to each side of the implication.

(The Coq version of this corollary is named sg to wfg and wfg to sg, in brenner-coq/src/
ResourceDependency.v) □

5.2 Soundness

The property of soundness ensures the absence of false positives, that is, soundness entails that if

there is a cyclew in the WFG of a given state S , then such state is deadlocked. The proof is split into

two main steps. First, we divide the task map from state S into two disjoint task maps, according

to the membership of the tasks (vertices) in cyclew . Second, we then show that any state whose

task map is composed of the vertices mentioned in cyclew is totally deadlocked, which allow us to

conclude that state S is deadlocked.

Lemma 5.8. Let S = (M,T ) and G be the WFG associated with S . Letw be a walk on G such that
t ∈ w if, and only if, t ∈ dom(T ). Ifw is a cycle, then state S is totally deadlocked.
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Proof. To show that S is totally deadlocked, we must prove that: (i) all tasks in S are waiting on

some event, (ii) all tasks are being impeded by some event, and (iii) T is nonempty.

Part (i). We need to show that if t ∈ dom(T ), then there exists an event e such that t wait-onS e .
Since t ∈ dom(T ), from the hypothesis we have that t ∈ w . Given thatw is a cycle and that t ∈ w ,

then there exists a task t ′ such that (t , t ′) ∈ w , which we invert to conclude that t wait-onS e .
Part (ii).We need to show that if twait-onSe , then there exists some task t ′ such that t ′impede-byS

e . From twait-onS e , we get that t ∈ dom(T ) and by hypothesis t ∈ w . But asw is a cycle and t ∈ w ,

then there is some vertex t ′ such that (t , t ′) ∈ w . From (t , t ′) and t is waiting on e , we have

that e impede-byS t
′
.

Part (iii). Task map T is nonempty, since w is a cycle, which by definition has at least one

vertex t ∈ w , thus, by hypothesis, t ∈ dom(T ).
(The Coq version of this lemma is named soundness totally, in brenner-coq/src/Soundness.v)

□

Theorem 5.9. Ifw is a cycle on the WFG of S , then state S is deadlocked.

Proof. Let state S = (M,T ⊎T ′) be such that t ∈ w if, and only if, t ∈ dom(T ). Let G be the

WFG associated with S and G ′ be the WFG associated with (M,T ). Next, we show that ifw ∈ G,
thenw ∈ G ′, which can be shown by proving that if (t , t ′) ∈ G, then (t , t ′) ∈ G ′. By definition of

WFG-edge, our hypothesis are (t , t ′) ∈ w , t wait-onS e , and e impede-byS t
′
; and we want to show

that t wait-on(M,T ) e and that e impede-by(M,T ) t
′
.

First, we show that twait-on(M,T ) e . From t ∈ w , we have that t ∈ dom(T ), thus twait-on(M,T ) e .
Second, we show that e impede-by(M,T ) t

′
, or, by the definition of impedes, that there exists

some event er such that er ≺ e and t assoc(M,T ) er , which we get by inverting e impede-byS t
′
.

Hence, we only need to show t assoc(M,T ) er , which holds by inverting t assocS e and knowing

that t ∈ dom(T ).
Sincew is a cycle in the WFG associated with (M,T ) such that t ∈ w if, and only if, t ∈ dom(T ),

then by applying Lemma 5.8 we get that (M,T ) is totally deadlocked, which concludes our proof.

(The Coq version of this theorem is named soundness, in brenner-coq/src/Soundness.v) □

5.3 Completeness

The property of completeness entails the absence of false negatives, that is, for any deadlocked

state S we can exhibit a cycle in the WFG of S . The proof is divided into two steps. First, we consider
totally deadlocked states S , in which we observe that each task is a vertex in the WFG of S with an

outgoing arc. There is a cycle in any finite graph whose vertices have at least an outgoing arc, so

totally deadlock states have a cycle. Second, we show the WFG of a totally deadlocked state is a

subgraph of the WFG of the relative deadlocked state, thus we can conclude our proof.

Lemma 5.10. Let G = (V ,A) be the WFG associated with some state S . If S is totally deadlocked,
then there exists a cyclew in G.

Proof. We know that if (i) A is nonempty, and (ii) all vertices in G have an outgoing arc, thenG
has a cycle. Our mechanisation provides a constructive proof of this result, yet since this is a

standard result outside of the focus of this paper we redact its discussion.

Part (i), we show that graph A is nonempty. Let S = (M,T ). Since S is totally deadlocked,

then there exists some t ∈ dom(T ). Furthermore, we know that all tasks are waiting on some

event e , thus t wait-onS e . But given that S is totally deadlocked, then there is some task t ′ such
that e impede-byS t

′
. Hence, (t , t ′) ∈ G and therefore G is nonempty.

Part (ii), we show that if t ∈ G, then there exists some task t ′ such that (t , t ′) ∈ G. From t ∈ G
and the definition of totally deadlocked, we get that there exists an event e such that t wait-onS e .
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Hence, by definition of totally deadlocked, there exists some task t ′ such that e impede-byS t
′
and

t ′ ∈ S ; let us take t ′. From t wait-onS e and e impede-byS t
′
, we get that (t , t ′) ∈ G.

(The Coq version of this lemma is named totally deadlock has cycle, in brenner-coq/src/
Completeness.v) □

Theorem 5.11. If S is deadlocked, then there exists a walkw such thatw is a cycle in the WFG of
state S .

Proof. Let graph G be the WFG associated with S . Now, by inverting the hypothesis that S is

deadlocked we get that S = (M,T ⊎T ′), (M,T ) is totally deadlocked, and G ′ is the WFG associated

with (M,T ) such thatG ′ is a subgraph ofG . From Lemma 5.10 and (M,T ) being totally deadlocked,

we get that there exists a cyclew in G ′. Yet, since G ′ is a subgraph of G, thenw is a cycle in G.
(The Coq version of this theorem is named completeness, in brenner-coq/src/Completeness.v)

□

6 ARMUS IMPLEMENTATIONS

This section discusses the implementation of Armus for X10 and Java. Our open source implemen-

tations
6
are the first sound and complete tools for barrier-deadlock verification in both cases. Key

features are scalability from dynamic selection between WFG and SG models (Section 6.1) and

support for distributed barriers (Section 6.3).

Armus is implemented as a two layer framework. The Verification Layer is a platform-independent

core library for managing the monitored system state and performing the deadlock detection. The

Application Layer consists of a specific implementation for each target language. It is responsible

for correlating the barrier operations in the target language with Armus phaser operations, to

extract and maintain the system state in a consistent manner.

6.1 Verification Layer

The Verification Layer (VL) is a Java library that has two main purposes: maintenance of the system

state required by the deadlock verification; and the actual deadlock checking.

Overall methodology. Based on the formal developments in the preceding sections, we give a

practical methodology for deadlock verification that is readily applicable to existing barrier and

phaser systems, including distributed implementations. A key point that we leverage: Armus dead-

lock verification can be performed on a composition of per-task views of the system state obtained

from only awaiting tasks. Such “partial” system views are safe abstractions of the centralised, global

view represented by a formal system state S , w.r.t. the deadlock verification.

The methodology stipulates: whenever a task enters a potentially blocking await operation, the

event it is waiting on and the set of events currently associated with that task are recorded; we refer

to this localised information as the blocking status of the task. The blocking status recorded for a

task is cleared on completion of the await operation. Note that a blocking status is invariant while

the task remains awaiting; in particular, its phaser memberships.

The deadlock verification is then conducted as follows:

(1) A snapshot of the global wait-on and associated-events relations (Section 3.2) is obtained by

compiling all the currently recorded blocking statuses.

(2) The impede-by relation is derived from the above, giving the base components of the TEG

(Definition 4.1).

(3) The TEG components are used to construct the associated WFG or SG (Definition 4.2). The

system is deadlocked if, and only if, there is a cycle in the constructed graph.
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Given the blocking statuses of all currently awaiting tasks, the obtained wait-on is the same

as wait-onS for the full system state S , but the associated events relation is the subset of assocS
restricted to awaiting tasks only. In comparison to the core definitions in Section 3.2, this restriction

serves as a safe optimisation that reduces the size of derived impede-by. The restriction preserves

soundness because new cycles are never introduced (edges may only be pruned), and completeness

because existing cycles are always retained (all tasks involved in a cycle are in wait-onS ).

VL state management. Following this methodology, the VL maintains Armus system state as

a map from tasks to blocking status records. Its key set comprises the tasks that are currently

executing an operation corresponding to an Armus phaser await. Each record is a pair: the event

that the task is waiting on, and the set of events associated with the task; this information is

provided by the Application Layer (Section 6.2). The VL directly maintains the system state as

per-task records (as opposed to the derived wait-for and impede-by dependencies) to optimise the

processing of operations related to updating the blocking statuses, since they are more frequent

than deadlock checking.

Graph selection and cycle checking. The deadlock checker, following steps (1)–(3), implements

the core functionality for: compiling the wait-for and impede-by dependencies from the blocking

statuses, graph model selection and construction, and cycle detection. We use JGraphT
14
to perform

cycle detection.

The VL supports two graph selection modes: static and dynamic. In the static mode, the deadlock

checker always uses the specified model type (cf. inherent coupling to WFGs by design, e.g., [34]).
In the dynamic mode, the graph model is dynamically selected according to the heuristics described

below, meaning that the verification may switch between models during execution. We outline the

implementation of each mode.

• TheWFG-static mode closely follows the main methodology (as outlined inSection 6.1) by

constructing the associated WFG in two passes over the blocking status records. The first

derives the impede-by dependencies. The second constructs the WFG by generating an edge

from each event being waited on by a task to the events impeded by that task.

• In the SG-static mode, SG construction is optimised into one pass by directly generating an

edge from each event e associated with the task to the event the task is waited on, excluding
e . This optimisation is possible because the barrier facilities of Java and X10 support only the

await(p) form of awaiting (i.e., not await(p,n)), and hence: (1) it is unnecessary to build the

SG edges transitively; and (2) SG cycles of length one, (e, e), cannot arise.
A trade-off of conducting a single pass is that the resulting graph contains at least the nodes

of the formally defined SG, and possibly more, namely events modelled as being impeded

but not being observed by any task. However, this remains correct because these additional

nodes have no incoming edges (so no new cycles are introduced) and no edges are removed.

• The dynamicmode starts with the SG construction pass, but additionally builds the impede-by

dependencies alongside. We employ a heuristic during this pass: if the number of SG-edges

exceeds the number of blocked status records processed by a configurable threshold, the

VL switches to WFG construction (by finishing the building of impede-by). By default, our

implementation uses a threshold of twice as many SG-edges as tasks, obtained from practical

experiments. If the initial SG pass completes, the VL may still opt to build the WFG according

to ratio of tasks to event nodes (following Proposition 4.4).

14
http://jgrapht.org/
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6.2 Application Layer

We present implementations of the Application Layer (AL) for verifying barrier deadlocks in X10 and

Java, Armus-X10 (Section 6.3) and JArmus (Section 6.4), respectively. The AL implementations serve

as frontend user tools that work by “weaving” Armus verification instructions into the program.

Armus-X10 currently supports the Java backend of X10 (Managed X10); an implementation for the

C++ backend would follow the same principles.

Armus-X10 and JArmus are implemented as a post-compilation step, taking the generated Java

bytecode as input. Any Java/X10 program that passes standard compilation is accepted by the

Armus tools, returning a valid Java/X10 program (i.e., with respect to standard JVM dynamic class

verification) that is modified only by the insertion of Armus instructions. The resulting program thus

features the same barrier usage as the original, but with the Armus dynamic deadlock verification

guarantees for the targeted barrier programming facilities (detailed below). Both implementations

use AspectJ
15
to weave the required VL calls around the target operations; e.g., to pass the blocking

status to the VL on entering a potentially blocking barrier operation, and to clear the blocking

status afterwards.

Deadlock detection and avoidance. Our implementations support deadlock avoidance in addition to
standard detection. Avoidance mode is implemented by running the main verification methodology

(as outlined above) inline with every invocation of a potentially blocking operation. This is achieved

byweaving both the VL state update and deadlock checking calls around every such target operation.

From the user perspective, the target operation is interrupted by an exception if it will introduce a

deadlock. For certain applications, such exceptions may be handled by the programmer in a manner

that promotes resilience to deadlocks. See Section 8 for further discussion of deadlock avoidance.

In the default detection mode, only the VL state update calls are weaved into the user program;

Armus performs the deadlock verification periodically. In contrast to avoidance, the detection

mode only reports already existing deadlocks, with lower performance overhead. The comparative

performance of detection and avoidance is evaluated in Section 7.1.

6.3 Armus-X10

Armus-X10 supports fully automatic instrumentation of all usages of clocks, finishes, and the

SPMDBarrier, including their distributed versions. All of the key information required by Armus,

such as task IDs and the barrier membership of each task, is directly obtained from the X10 runtime.

Our implementation uses a small extension that considers tasks as waiting on a set of events (i.e.,
a single task may have multiple wait-on relationships), to explicitly handle the X10 advanceAll
command for synchronising on every clock that the calling task is registered with. Alternatively, we

could treat advanceAll in Armus without these extensions, through its encoding into split-phase

synchronisations (call resume on each clock in arbitrary order, followed by advance on each in

arbitrary order).
16

Distributed deadlock detection. One of the key design goals of X10 is to promote a smooth

migration between shared memory and distributed deployments of barrier programs [10]. A

distributed barrier program is composed of tasks synchronising on shared barriers while running

at different places, which may map concretely underneath to processes running in separate address

spaces on the same, or different, machines, synchronising by asynchronous message passing.

Listing 4 gives a distributed version of the code in Listing 1 (corrected to avoid the original

15
https://eclipse.org/aspectj/

16
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf §15.1.4
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Listing 4. Distributed X10 version of Listing 1 (corrected to avoid the original deadlock), executing each child

task at a different remote place p.

1 val c = Clock.make();

2 finish {

3 for (p in Place.places())

4 at (p) async {

5 for (j in 1..J) {

6 val l = a(i-1);

7 val r = a(i+1);

8 c.advance();

9 a(i) = (l+r)/2;

10 c.advance();

11 }

12 }

13 c.drop();

14 }

deadlock) where each child task is executed in a separate place, as designated by the at clause of
the async statement.

A distributed deployment of Armus-X10 features an instance of the Armus runtime at each

distributed site, with reliable access to a (remote) central data store: our implementation uses a

TCP connection from each site to a failure resilient Redis
17
server. Each Armus instance periodically

uploads its local blocking status to the data store, i.e., a disjoint portion of the global system state.

Likewise, the deadlock checker periodically, and asynchronously, polls the data store for the current

snapshot of the system state, on which it performs the deadlock detection. Consistency is ensured

by the use of TCP for ordered and reliable delivery of the state update messages between each site

and the central store. We do not assume any synchronisation between the blocking status messages

from different sites.

The basis for this approach is rooted in the basic methodology outlined in Section 6.1. First, note

that it is sound to conduct the verification on the partial snapshot of system state formed from

the blocking statuses of any subset of blocked tasks (i.e., due to asynchronous delays of update

messages). Then the key point regarding overall soundness (that is, the key difference between this

distributed setting and the basic methodology) relates to the clearing of blocking statuses from the

central store when tasks complete their await operations. The asynchrony of these messages means

that the deadlock detection may be conducted on a model that includes “dead” edges, i.e., those built
from a blocking status for which the task has completed its await in the actual system. However, it

is inherently impossible for such an edge to be part of a cycle in the model if the relevant task is

no longer blocked in the actual system (i.e., a false positive scenario), since phaser deadlock is a

stable property. The stability of deadlocks and assumption of reliable network infrastructure also

ensures a form of completeness for this setting, in that a deadlock is always eventually detected.

The correctness of the verification is thus unaffected by any discrepancy arising due to asynchrony,

between the analysis state according to the central store and the concrete state of the actual system.
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Listing 5. Deadlock-free Java version of Listing 1 using the standard Phaser API and JArmus.

1 c = new Phaser(1); // "clock" Phaser (Java registration of parent task via arg value)

2 f = new Phaser(1); // "finish" Phaser

3 JArmus.register(c); // Additional JArmus "registration" (calling thread ID recorded)

4 JArmus.register(f);

5 for (int i = 1; i <= I; i++) {

6 c.register(); // Java registration (API internal counter increment)

7 f.register();

8 new Thread() { // Define and spawn i-th task

9 public void run() {

10 JArmus.register(c); // Additional JArmus "registration"

11 JArmus.register(f);

12 for (int j = 1; j <= J; j++) {

13 l = a[i-1];

14 r = a[i+1];

15 c.arriveAndAwaitAdvance();

16 a[i] = (l + r) / 2;

17 c.arriveAndAwaitAdvance();

18 }

19 c.arriveAndDeregister();

20 f.arriveAndDeregister();

21 }

22 }.start();

23 }

24 c.arriveAndDeregister();

25 f.arriveAndAwaitAdvance();

6.4 JArmus

JArmus supports the standard Phaser API, and the other barrier programming facilities in the

java.util.concurrent package that it subsumes, such as CountDownLatch and CyclicBarrier.
The Java Phaser is a limited version of the general concept of phasers that supports dynamic

membership and split-phase synchronisations, but does not permit asynchronous advancing of

local phases by individual members (and, consequently, cannot support awaiting arbitrary phases).

This limitation is related to a design choice of these APIs that, unlike the X10 runtime, do not

record barrier membership with respect to an explicit notion of task (i.e., thread) ID. Instead, a
Phaser simply records the number of times the register method is called, without considering

the identity of calling threads. It is left to the programmer to use register appropriately, and

hence the relationship between the threads that called register and the actual participants of a

synchronisation (i.e., threads calling one of the await methods) is also left implicit. Similarly for

CyclicBarrier, the programmer declares the number of participants (and shares the object with

that many tasks), but does not specify which tasks participate in synchronisations.

Due to the above limitation, JArmus, unlike Armus-X10, does not support fully automatic

instrumentation of Java programs that use these APIs. JArmus instead relies on the programmer to

manually provide the missing thread membership information by additionally calling the static

register method of the JArmus class, typically on task start up (cf. the clocked clause in an X10

17
http://redis.io/
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async). For example, Listing 5 lists a Java version of the running example from Listing 1 using

Phaser and JArmus. The Java “registration” of each child task to, e.g., the “clock” Phaser c (Line 6),
is matched by a JArmus.register, taking the phaser as an explicit argument and the ID of the

calling thread implicitly, at the start of the task (Line 10). The Java registration of the parent task,

implicitly signified by initialising the phaser to a count of 1 (Line 1), is similarly matched by an

explicit JArmus.register (Line 3).
In general, there is no precise method for statically inserting these JArmus calls automatically, nor

any way to reconstruct the missing membership information at run-time from the existing Phaser
(or CountDownLatch, CyclicBarrier) classes alone. In practice, if the user does not correctly use

JArmus.register to register a task to some phaser, then a JArmus runtime exception will typically

be raised if and when the task attempts a relevant operation on the phaser, due to the Armus

instrumentation of the latter.

The information on which tasks are participating, rather than just counting the number of

participants, would be a crucial requirement to extend Java Phaser to support all synchronisation

patterns possible with phasers. For instance, in a multi-producer-single-consumer pattern, the

phase number of each producer allows the consumer to proceed step-wise at the pace of whichever

is the “slowest” producer, and which may vary throughout the computation.

7 EVALUATION

The aim of the evaluation process is to 1) ascertain whether the performance impact of Armus

scales with the increase in the number of tasks, 2) evaluate the performance overhead of distributed

deadlock detection, and 3) compare execution impact of selecting between the SG with the WFG

and using the dynamic model selection approach.

The hardware used to run the benchmarks has four AMD Opteron 6376 processors, each with 16

cores, making a total of 64 cores. There are 64GB of available RAM. The operating system used

is Ubuntu 13.10. For the languages, we used Java build 1.8.0 05-b13, and X10 version 2.4.3. For

compiling and running we used the default compiler and runtime flags of each benchmark suite.

We follow the start-up performance methodology detailed in [26]. We take 31 samples of the

execution time of each benchmark and discard the first sample. Next, we compute the mean of the

30 samples with a confidence interval of 95%, using the standard normal z-statistic.

7.1 Impact of Non-distributed Verification

The two goals of this evaluation are: to measure the impact of verification on standard Java

benchmarks, and ii) to measure whether the verification scales with the increase of the number of

tasks. We run the verification algorithm against a set of standard parallel benchmarks available for

Java. JArmus is run in the detection mode (every 100 milliseconds) and in the avoidance mode, both

use the dynamic model selection. Note that the Java applications we checked are not distributed.

We select benchmarks from the NAS Parallel Benchmark (NPB) suite [24] and the Java Grande

Forum (JGF) [65] benchmark suite. The NPB ranges from kernels to pseudo-applications, taken

primarily from representative Computational Fluid Dynamics (CFD) parallel applications. The

JGF is divided into three groups of applications: micro-benchmarks, computational kernels, and

pseudo-applications. All benchmarks proceed iteratively, and use a fixed number of cyclic barriers

to synchronise stepwise. Furthermore, all benchmarks check the validity of the produced output.

For the sake of reproducibility we list the parameters of the benchmarks run as specified in [24, 65]:

BT uses size A, CG uses size C, the Java version of FT uses size B, MG uses size C, RT uses B, and SP uses
size W. Note: the input set chosen for benchmark SP only allows it to scale up to 31 tasks; however,
to simplify the presentation of the graphs, we have represented the results of this benchmark in

the 32-task category.
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Fig. 7. Comparative execution time for non-distributed benchmarks (lower means faster).

Figure 7 summarises the comparative study of the execution time for each benchmark. The

results for the NPB and JGF benchmark suites are depicted in Figures 7a to 7f. In detection mode,

since there is a dedicated task to perform verification, we observe that the overhead does not

increase linearly as we add more tasks. The runtime-factor sits below 1.15× and in most cases is

negligible. In avoidance mode, each task checks the graph whenever it blocks, so as we add more

tasks, the execution overhead increases. Still, in the worst case, benchmark CG, the runtime-factor

is 1.50×, which is acceptable for application testing purposes.
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Fig. 8. Comparative execution time for distributed deadlock detection (lower means faster).

7.2 Impact of Distributed Verification

The goal of the evaluation is to measure the runtime overhead of deadlock detection in available

X10 distributed applications. Armus-X10 is configured with the distributed deadlock detection

mode, running the verification algorithm every 200 milliseconds. The chosen benchmarks are

available via the X10 source code repository.
18
Deadlock avoidance is unavailable in the distributed

setting.

Benchmarks FT and STREAM come from the HPC Challenge benchmark [46], SSAC2 is an HPCS

Graph Analysis Benchmark [3], JACOBI and KMEANS are available from the X10’s website. For

reproducibility purposes the non-default parameters we select are: FT magnitude 11; KMEANS 25k
points, 3k clusters to find, and 5 iterations; JACOBI matrix of size 40, maximum iterations are 40;

SSCA2 215 vertices, a with a probability of 7%, and no permutations; STREAM with size of 524k.

Figure 8 depicts the execution time of each benchmark with and without verification. There is

no statistical evidence of an execution overhead with running deadlock detection mode.

7.3 Impact of the Graph Model Choice

The goal of this evaluation is to measure the impact of the graph model in the verification procedure.

To this end we analyse the worst case behaviour: programs that generate graphs with thousands

of edges. In particular, we evaluate our dynamic model selection against the usual static model

selection (WFG and SG).

We select a suite of programs that spawn tasks and create barriers as needed, depending on the

size of the program, unlike the classical parallel applications we benchmark in Sections 7.1 and 7.2

where the number of tasks should correspond to the number of available processing units (cores).

The suite of programs exercises different worst case scenarios for the verification algorithm: many

tasks versus many barriers.

The chosen benchmarks are educative programs taken from the course on Principles and Practice
of Parallel Programming, taught by Martha A. Kim and Vijay A. Saraswat, Fall 2013.

19 BFS performs

a parallel breadth-first search on a randomly generated graph. There is a task per node being visited

and a barrier per depth-level of the graph. FI computes a Fibonacci number iteratively with a

shared array of clocked variables (each pairs a barrier with a number). Each element of the array

holds the outcome of a Fibonacci number. When the program starts it launches n tasks. The i-th

18
http://sourceforge.net/projects/x10/files/x10/2.4.3/x10-benchmarks-2.4.3.tar.bz2/download

19
http://www.cs.columbia.edu/~martha/courses/4130/au13/
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Table 3. Average edge count per benchmark per graph mode.

SE FI FR BFS PS

Auto 24 808 190 7 6

SG 53 2143 1735 3 7

WFG 24 1285 89 605 789

TEG 74 2077 1643 1776 1450

task stores its Fibonacci number in the i-th clocked variable and synchronises with task i + 1 and
task i + 2 that read the produced value. FR computes a Fibonacci number recursively. Recursive

calls are executed in parallel and a clocked variable synchronises the caller with the callee. SE
implements the Sieve of Eratosthenes using clocked variables. There is a task per prime number

and one clocked variable per task. PS computes the prefix sum—or cumulative sum—for a given

number of tasks. Given an input array with as many elements as there are tasks, the outcome of

task i is the partial sum of the array up to the i-th element. All tasks proceed stepwise and are

synchronised by a global barrier.

Figures 9 and 10 depict the execution time of each benchmark verified by Armus-X10 in avoidance

and detection modes (respectively) where we vary the selection method of the graph model. Table 3

lists the average number of edges used in verification and the relative execution time overhead of

each benchmark. When running in detection, since there is no statistical difference in the average

overhead (cf. Figure 10), Table 3 simply lists the verification overhead of auto mode when running

in avoidance mode only.

We can classify the benchmarks in three groups according to the ratio between the number

of tasks and the number of resources: i) similar count of tasks and resources, benchmark SE; ii)
much more resources than tasks, benchmarks FI and FT; and iii) much more tasks than resources,

benchmarks BFS and PS. When i) there are as many resources as there are tasks, then all graph

models perform equally well. When ii) there are more resources than tasks, and iii) vice-versa,

the choice of the graph model is of major importance for a verification with low impact on the

execution time.

Overall, dynamic graph selection outperforms static graph selection. Furthermore, the worst

model to choose from is the bipartite TEG graph, as it contains more information than the WFG

and the SG. When considering dynamic graph selection, the worst-case runtime-factor for deadlock

detection is 1.2× and 2.4× for deadlock avoidance. The graph model choice severely amplifies the

verification overhead in deadlock avoidance. The case in point is benchmark PS; the runtime-factor

for dynamic selection is 1.8×, for SG is 2.6×, for WFG is 5.9×, and for TEG is 14.4×.

8 RELATEDWORK

This section lists related work focusing on deadlock verification in parallel programming languages.

Background on graph-based approaches to deadlock detection were discussed in Section 4.1.

Deadlock prevention. The literature around source code analysis to prevent barrier related dead-

locks is vast. The fork/join programmingmodel is easily restricted syntactically to prevent deadlocks

from happening. Lee and Palsberg [43] present a calculus for a fork/join programming model, suited

for inter-procedural analysis through type inference, and establish a deadlock freedom property.

The work also includes a type system that is used to identify may-happen-parallelism, further
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explored in [1]. Finally, related work on “barrier matching” tackles the problem of barrier deadlocks

in a setting where there is only global barrier synchronisation [39, 73].

Cogumbreiro et al. [14] propose a static typing system to ensure the correctness of phased

activities for a fragment of X10 that disallows awaiting on a particular clock. Therefore, programs

that involve more than one clock and that perform single waits cannot be expressed, nor verified

(cf. the X10 and Java programs we present in Section 2).

The tool X10X [28] is a model checker for X10. Model checkers perform source code analysis and

can be used to discover potential deadlocks. This class of tools is affected by the state explosion

problem: the analysis grows exponentially with the number of possible interleaves of the program.

Thus, X10X may not be able to verify complex programs. In general, prevention is too limiting to

be applied to the whole system, so language designers use this strategy to eliminate just a class of

deadlocks.

Ganjei et al. propose a static verification technique for unbounded phaser synchronisation [25].

The proposed tool performs symbolic execution on a simple language with branching and condi-

tional loops. The authors show that the problem of static deadlock freedom for such a language is

undecidable.

Deadlock avoidance. The problem of deadlock avoidance is a very well studied problem that dates

as far back as 1960’s, e.g., Banker’s Algorithm by Edsder Dijkstra [22]. For instance, Minoura [47]

and Reveliotis et al. [56] cover the problem complexity in deadlock avoidance with intricate

synchronisation patterns. In general, deadlock avoidance can only disallow actions that lead to a

deadlock and inform the culprit task of its error, e.g., Armus throws an unchecked exception. For

some synchronisation mechanisms, however, it is possible to preclude schedules that may lead to a

deadlock by: controlling the lock acquisition order [6, 27, 51, 70]; using transactions to avoid data

races which lead to deadlocks with futures [50, 72]; executing critical regions as transactions [55];

and adding extra data in streaming computation [45]. To our best knowledge, techniques that

avoid deadlocks in the context of barrier synchronisation only handle a few situations of barrier

deadlocks, unlike our proposal that is complete (with reference to Theorem 5.11). For instance, in

X10 and HJ, tasks deregister from all barriers upon termination; this mitigates deadlocks that arise

from missing participants. HJ avoids deadlocks that originate from the interaction between phasers
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and finish blocks by limiting the use of phasers to the scope of finish blocks. Cogumbreiro et al.
use Armus in the context of a tool that specialises in avoiding deadlocks caused by futures [16].

Deadlock detection. UPC-CHECK [57] deals with deadlock detection, but in a simpler setting

where barriers are global; in contrast, our work can handle group synchronisation. Literature

concerning MPI deadlock detection takes a top-down approach: the general idea is given, but

mapping it to the actual MPI semantics is left out. DAMPI [69] reports a program as deadlocked

after a period of inactivity, so it may indicate false positives, i.e., it can misidentify a slow program

as being deadlocked. Umpire [32] and MUST [34] (a successor of Umpire) use a graph-based

deadlock detection algorithm that subsumes deadlock detection to cycle detection, but omit a

formal description on how the graph is actually generated from the language, cf. Theorems 5.9

and 5.11. We summarise the distributed detection technique of MUST. First, all sites collaborate to

generate a single stream of events to a central site. The difficulty lays in ordering and aggregating

the events generated by the various tasks. Then, the central site processes the stream of events

to perform the collective checking, where, among other things, it identifies any completed barrier

synchronisations. Finally, since MUST maintains a distributed wait state, the site performing the

collective checking must broadcast the status of terminated synchronisations back to the various

sites of the application. The wait state is required to delay the graph analysis as much as possible.

In our approach, tasks only requires local information to maintain data consistency, which means

that, in a distributed setting, Armus does not require the last synchronisation step that MUST

performs. Furthermore, unlike MUST, Armus is capable of verifying split-phase synchronisation,

known in MPI as non-blocking collective operations.

Transitive closure. Instead of testing whether the wait-for dependencies are cyclic (such as Armus

does), one can test if a given blocked task can reach itself through the wait-for dependencies. The

reachability problem can be solved by maintaining the transitive closure of the reachability relation

on the wait-for graph. Such a technique has been used in the context of deadlock avoidance [5], yet

the theoretical bounds areworst when compared to cycle detection. Computing the transitive closure

from scratch can be solved with matrix multiplication [48]; the best known algorithm solves this

problem in O(n2.376) [17]. Alternatively, the transitive closure can be maintained dynamically [20],

but updating the graph takes O(n2) time. Furthermore, maintaining the transitive closure usually

assumes a fixed set of vertices throughout the execution, and the problem is compounded since

updates and tests run concurrently.

Verification of other barrier properties. Saraswat and Jagadeesan [59] formalise the concurrency

primitives of X10. Le et al. [42] devise a verification for the correct use of a cyclic barrier in a fork/join
programming language. Vasudevan et al. [68] perform static analysis to improve performance of

synchronisation mechanisms. Cogumbreiro et al. [15] formalises the Habanero phasers and a

causality relation on phasers; the results are mechanised using the Coq proof assistant. Crafa et
al. [18] present a small-step semantics of X10 with support for fault tolerance; the formalisation

omits clocks (which are similar to phasers). The results of the paper are mechanised using the

Coq proof assistant. Murthy et al. [49] propose the design of a distributed phaser, using skip lists.

Scenarios of the distributed protocol are verified with the SPIN model checker.

9 CONCLUSION

We put forward Armus, a dynamic verification tool for barrier deadlocks that features both detection

and avoidance, distribution support, and scalability improvements based on dynamic graph model

selection. The target of verification is the core language Brenner, introduced to represent programs

with various barrier synchronisation patterns. The graph-based deadlock verification of Armus is
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formalised and shown to be sound and complete against Brenner. We prove that one can select

from any of two graph models (WFG and SG) and correctly identify a deadlock situation. This result

lets our tool dynamically choose the model that yields a smaller graph — a novelty in checking for

deadlocks. Our benchmarks show that dynamic model selection outperforms the standard static

model selection. Overall, the worst-case runtime-factor for deadlock detection is 1.21×, and is

often not statistically significant, e.g., in distributed benchmarks. We present two applications:

Armus-X10 monitors any unchanged X10 program for deadlocks; JArmus is a library to verify Java

programs. To the best of our knowledge, our work is the first dynamic verification tool that can

correctly detect Java and X10 barrier deadlocks.

For future work, our goal is to extend the verification of our implementation. Our starting point

is to verify the algorithm for distributed deadlock detection. Another direction is the verification

of MPI programs that introduce complex patterns of point-to-point synchronisation and enable a

direct comparison with state-of-the-art in barrier deadlock detection.
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