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Impact (Part 1)

why GPUs

what makes static analysis of GPU
programs unique

a static DRF analysis for GPU programs

more robust, more scalable in largest
comparative study of its kind

Theoretical contributions (Part 2)

a novel analysis of data-race freedom

a formalization of such analysis using a
proof assistant

Published works

Checking Data-Race Freedom of GPU
Kernels, Compositionally (CAV'21)

Memory Access Protocols: Certified
Data-Race Freedom for GPU Kernels
(FMSD'23)

Today's talk
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Motivation
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Why do GPUs matter?

GPUs are everywhere
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GPUs are a computing cornerstone

of scientific advancement
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Name GPU

1 Supercomputer Fugaku ☐

2 Summit 🗹

3 Sierra 🗹
4 Sunway TaihuLight ☐

5 Selene 🗹

6 Tianhe-2A 🗹

7 JUWELS Booster Module 🗹

8 HPC5 🗹

9 Frontera 🗹

10 Dammam-7 🗹
www.top500.org/lists/top500/2020/11/highs/

Credit: Carlos Jones/ORNL

GPUs in High Performance Computing (HPC)

Power 8 out of 10 of the Top 10 super computers
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GPUs powering chemistry

doi:10.1016/j.jmgm.2010.06.010
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GPUs powering biology

doi:10.1093/bib/bbq006
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GPUs power the AI revolution
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Autoware.AI
Autoware.AI is the world's first "All-in-One" open-source software for autonomous driving
technology.
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Why we should care about static
verification of GPU programs?
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GPU programming, a primer
① High-level of parallelism at a reduced cost

(faster processing, lower cost, reduced power consumption)

② Techniques designed for CPUs do not work for GPUs

(hardware assumptions differ: memory available, execution model)

③ GPUs are difficult to program and debug
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GPU programming is difficult
high degree of parallelism (up to tens of thousand of threads)

high degree of concurrency (up to 1,024 threads accessing the same array)

unconstrained access to a shared memory (no locks)

thousands of threads indexing disjoint portions of arrays

devices are memory constrained (affects debugging techniques)
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GPU program example

Source:

Optimizing matrix transpose in CUDA. NVIDIA CUDA SDK Application Note 18 (2009)

Also in:

Padding free bank conflict resolution for CUDA-based matrix transpose algorithm.
DOI: 10.1109/SNPD.2014.6888709

Memory Access Protocols  ⚯  Tiago Cogumbreiro 14 / 48

https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://doi.org/10.1109/SNPD.2014.6888709


GPU program example
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GPU program example

0 1

0 1

1 0

1 0

thread (0,1)

thread (1,0)
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GPU data-races

Data-race

Two threads accessing the same array index concurrently

At least one thread writing

Data-Race Freedom (DRF) analysis

Show that for all possible inputs and executions a program is absent of data-races.

A trivial data-race example (every thread writes to position 0)

A[0] = 1;
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GPU program example

Exhibits a data-race: the code after __syncthreads() of iteration i + 1 runs concurrently
with the code before __syncthreads() of iteration i.

Outer loops is used to measure the benefit of an optimization

Data-race corrupts the data in the array and affects the time measurements
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Contributions
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Contributions

Impact (Part 1)

a static DRF analysis for GPU programs

more robust, more scalable in largest comparative study of its kind

Theoretical contributions (Part 2)

a novel analysis of data-race freedom

a formalization of such analysis using a proof assistant
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Faial (our tool) GPUVerify PUG

Lowest false-positive rate
Dataset of 227 data-race free real-world kernels

Can verify 41% more kernels than others
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Best compromise time/memory
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Highest scalability
Vary the number of constructs from 1 to 50 (250 kernels in total)

Out of 5 tools, the only that scales linearly (time) (PUG, GPUVerify, GKlee, SESA)
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Limitations of our analysis
Cannot handle more than 13 nested synchronized loops

3rd out of 5 tools

We found a maximum nesting level of 3 in our experiments
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Demo
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Theoretical contributions

Property: DRF analysis (in green) is proved sound & complete (Theorem 1)

Technique: A behavioral type (syntax+semantics)

Artifact: Mechanized proofs using the Coq proof assistant (18,000 LOC)
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Remainder of the talk
Present our main result

Introduce a motivating example

Detail our analysis
1. Align protocols

2. Split protocols

3. Sequentialize protocols
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Main result
Let safe(H) mean that H is data-race free.

Analysis steps seq, split, align are sound and complete, wrt the DRF property

The over-approximations happen before MAP is created (protocol inference)

We further show that the set of concurrent accesses is preserved (more general)
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SMT backend
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Simplified running example
A CUDA example, which simplifies our initial example

Exhibits the same root cause (data-race)

Memory Access Protocols  ⚯  Tiago Cogumbreiro 30 / 48



➊

➊

➋

➋

➌

➌

➍

➍

31 / 48



Memory access protocols
Behavioral types for SIMT/SPMD that capture memory accesses

One type per array. Capture: accesses, synchronization, structured loops

Distinguish between synchronized/unsynchronized loops

Ongoing work (inference): Provable GPU Data-Races in Static Race Detection [PLACES'22]

➊ ➋

➊ ➋

➌ ➍
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A racy protocol

data-race
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How do we solve

the core problem?
Proving data-race-freedom in the unsynchronized fragment
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Data-race: , , , : rd[1] and

wr[1]. Assumptions

No synchronizations possible

Data-race: given t1 ≠ t2, index

of t1 equals index of t2 and at

least one is a write.

A data-race in the unsynchronized fragment

⇔ index(a1)=index(a4) ∨ index(a2) = index(a3) ∨ index(a2) = index(a4)

⇔ t1 + j1 = t2 ∨ t1 = t2 + j2 ∨ t1 = t2

t ​ =1 0 t ​ =2 1 j ​ =1 1 M > 1
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Sequentializing protocols (step 3)
Idea: represent the interleaving of any two threads (instead of all available threads)
(FSE'10)

Each variable is duplicated per thread (thread-local view)

Interpret loops as ∀-binders (FSE'10)

Key insight: Data-races are isolated on pairs of threads (not a transitive)

(FSE'10) Scalable SMT-Based Verification of GPU Kernel Functions.Guodong Li and Ganesh Gopalakrishnan.
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Sequentializing protocols
Source syntax

Target syntax

Tracing
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Sequentializing protocols
Sequencing

Results
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How do we get to

unsychronized protocols?
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Aligning protocols
(step 1)
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Aligning protocols (step 1)
We define a notion of aligned protocols, where accesses do not "leak" across iterations

We show that all protocols can be aligned (modulo notion of well-formedness)

Intuition: unfold loop and rearrange accesses

Insight: protocols have no local state; ordering only matter wrt synch

➋

➌

➊ ➋ ➌ ➍
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Aligning protocols

Source: well-formed protocols

Target: aligned protocols
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Aligning protocols
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Aligning protocols
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Splitting protocols
(step 3)
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Splitting protocols

➊ ➋ ➌ ➍

➌

➍
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Splitting protocols
Syntax-oriented extraction of unsynchronized fragments

Compositional analysis (no data-races between fragments)

Synchronized loop variables can also be interpret as a forall-binder

However, the binder must be shared by both threads (ie, only one r variable shared by
both threads)
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Conclusion

Behavioral types being used to enforce
data-race freedom

A compositional analysis, formally
proved

Large experimental evaluation (229
real-world + 258 synthetic = 487
kernels)

Used our tool to confirm data-races
found in the wild

Our approach is more scalable and more
precise (fewer false-positives) than
related work

Source code and proofs available in a
free software license

Future directions

Proving alarms are true (rather than
proving false alarms)

Resource analysis of memory access
protocols

Incompleteness logic to showcase
performance bottlenecks

https://gitlab.com/umb-svl/faial
https://gitlab.com/umb-svl/faial-coq
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