
Memory Access Protocols:

Certified Data-Race Freedom for GPU Kernels

Tiago Cogumbreiro, UMass Boston

Joint work with

Julien Lange, Royal Holloway, University of London

Dennis Liew, UMass Boston

Hannah Zicarelli, UMass Boston

September 26, 2023

Boston University

Memory Access Protocols  ⚯  Tiago Cogumbreiro 1 / 48



Impact (Part 1)

why GPUs

what makes static analysis of GPU
programs unique

a static DRF analysis for GPU programs

more robust, more scalable in largest
comparative study of its kind

Theoretical contributions (Part 2)

a novel analysis of data-race freedom

a formalization of such analysis using a
proof assistant

Published works

Checking Data-Race Freedom of GPU
Kernels, Compositionally (CAV'21)

Memory Access Protocols: Certified
Data-Race Freedom for GPU Kernels
(FMSD'23)

Today's talk

Memory Access Protocols  ⚯  Tiago Cogumbreiro 2 / 48



Motivation

3 / 48



Why do GPUs matter?

GPUs are everywhere

4 / 48



GPUs are a computing cornerstone

of scientific advancement

5 / 48



Name GPU

1 Supercomputer Fugaku ☐

2 Summit 🗹

3 Sierra 🗹
4 Sunway TaihuLight ☐

5 Selene 🗹

6 Tianhe-2A 🗹

7 JUWELS Booster Module 🗹

8 HPC5 🗹

9 Frontera 🗹

10 Dammam-7 🗹
www.top500.org/lists/top500/2020/11/highs/

Credit: Carlos Jones/ORNL

GPUs in High Performance Computing (HPC)

Power 8 out of 10 of the Top 10 super computers

Memory Access Protocols  ⚯  Tiago Cogumbreiro 6 / 48

https://www.top500.org/lists/top500/2020/11/highs/
https://www.flickr.com/photos/olcf/42957291821/in/photolist-NsW4ML-25mPCpZ-JkN2vk-28rZmfr-YYYjk1-282ZTzq-271XTpf-271XZao-26JSfsB-25mPBPa-287nqxR-FENxmy-22HVvNY-227b4AU-XgBEPE-W6iPRi-XZZrnP-28rxs9o-XqcFKR-28rZmpK-H4EmiH-27ZDEwH-26JSngB-279g4ti-25moRES-28vVuuM


GPUs powering chemistry

doi:10.1016/j.jmgm.2010.06.010

Memory Access Protocols  ⚯  Tiago Cogumbreiro 7 / 48

https://dx.doi.org/10.1016/j.jmgm.2010.06.010


GPUs powering biology

doi:10.1093/bib/bbq006

Memory Access Protocols  ⚯  Tiago Cogumbreiro 8 / 48

https://dx.doi.org/10.1093/bib/bbq006


GPUs power the AI revolution

9 / 48



Autoware.AI
Autoware.AI is the world's first "All-in-One" open-source software for autonomous driving
technology.

Memory Access Protocols  ⚯  Tiago Cogumbreiro 10 / 48



Why we should care about static
verification of GPU programs?

11 / 48



GPU programming, a primer
① High-level of parallelism at a reduced cost

(faster processing, lower cost, reduced power consumption)

② Techniques designed for CPUs do not work for GPUs

(hardware assumptions differ: memory available, execution model)

③ GPUs are difficult to program and debug

12 / 48



GPU programming is difficult
high degree of parallelism (up to tens of thousand of threads)

high degree of concurrency (up to 1,024 threads accessing the same array)

unconstrained access to a shared memory (no locks)

thousands of threads indexing disjoint portions of arrays

devices are memory constrained (affects debugging techniques)

Memory Access Protocols  ⚯  Tiago Cogumbreiro 13 / 48



GPU program example

Source:

Optimizing matrix transpose in CUDA. NVIDIA CUDA SDK Application Note 18 (2009)

Also in:

Padding free bank conflict resolution for CUDA-based matrix transpose algorithm.
DOI: 10.1109/SNPD.2014.6888709

Memory Access Protocols  ⚯  Tiago Cogumbreiro 14 / 48

https://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf
https://doi.org/10.1109/SNPD.2014.6888709


GPU program example

Memory Access Protocols  ⚯  Tiago Cogumbreiro 15 / 48



GPU program example

0 1

0 1

1 0

1 0

thread (0,1)

thread (1,0)

Memory Access Protocols  ⚯  Tiago Cogumbreiro 16 / 48



GPU data-races

Data-race

Two threads accessing the same array index concurrently

At least one thread writing

Data-Race Freedom (DRF) analysis

Show that for all possible inputs and executions a program is absent of data-races.

A trivial data-race example (every thread writes to position 0)

A[0] = 1;

Memory Access Protocols  ⚯  Tiago Cogumbreiro 17 / 48



GPU program example

Exhibits a data-race: the code after __syncthreads() of iteration i + 1 runs concurrently
with the code before __syncthreads() of iteration i.

Outer loops is used to measure the benefit of an optimization

Data-race corrupts the data in the array and affects the time measurements

Memory Access Protocols  ⚯  Tiago Cogumbreiro 18 / 48



Contributions

19 / 48



Contributions

Impact (Part 1)

a static DRF analysis for GPU programs

more robust, more scalable in largest comparative study of its kind

Theoretical contributions (Part 2)

a novel analysis of data-race freedom

a formalization of such analysis using a proof assistant

Memory Access Protocols  ⚯  Tiago Cogumbreiro 20 / 48



Faial (our tool) GPUVerify PUG

Lowest false-positive rate
Dataset of 227 data-race free real-world kernels

Can verify 41% more kernels than others

Memory Access Protocols  ⚯  Tiago Cogumbreiro 21 / 48



Best compromise time/memory

Memory Access Protocols  ⚯  Tiago Cogumbreiro 22 / 48



Highest scalability
Vary the number of constructs from 1 to 50 (250 kernels in total)

Out of 5 tools, the only that scales linearly (time) (PUG, GPUVerify, GKlee, SESA)

Memory Access Protocols  ⚯  Tiago Cogumbreiro 23 / 48



Limitations of our analysis
Cannot handle more than 13 nested synchronized loops

3rd out of 5 tools

We found a maximum nesting level of 3 in our experiments

Memory Access Protocols  ⚯  Tiago Cogumbreiro 24 / 48



Demo

25 / 48



Theoretical contributions

Property: DRF analysis (in green) is proved sound & complete (Theorem 1)

Technique: A behavioral type (syntax+semantics)

Artifact: Mechanized proofs using the Coq proof assistant (18,000 LOC)

26 / 48



Remainder of the talk
Present our main result

Introduce a motivating example

Detail our analysis
1. Align protocols

2. Split protocols

3. Sequentialize protocols

Memory Access Protocols  ⚯  Tiago Cogumbreiro 27 / 48



Main result
Let safe(H) mean that H is data-race free.

Analysis steps seq, split, align are sound and complete, wrt the DRF property

The over-approximations happen before MAP is created (protocol inference)

We further show that the set of concurrent accesses is preserved (more general)

Memory Access Protocols  ⚯  Tiago Cogumbreiro 28 / 48



SMT backend

Memory Access Protocols  ⚯  Tiago Cogumbreiro 29 / 48



Simplified running example
A CUDA example, which simplifies our initial example

Exhibits the same root cause (data-race)

Memory Access Protocols  ⚯  Tiago Cogumbreiro 30 / 48



➊

➊

➋

➋

➌

➌

➍

➍

31 / 48



Memory access protocols
Behavioral types for SIMT/SPMD that capture memory accesses

One type per array. Capture: accesses, synchronization, structured loops

Distinguish between synchronized/unsynchronized loops

Ongoing work (inference): Provable GPU Data-Races in Static Race Detection [PLACES'22]

➊ ➋

➊ ➋

➌ ➍

Memory Access Protocols  ⚯  Tiago Cogumbreiro 32 / 48



A racy protocol

data-race

Memory Access Protocols  ⚯  Tiago Cogumbreiro 33 / 48



How do we solve

the core problem?
Proving data-race-freedom in the unsynchronized fragment

34 / 48



Data-race: , , , : rd[1] and

wr[1]. Assumptions

No synchronizations possible

Data-race: given t1 ≠ t2, index

of t1 equals index of t2 and at

least one is a write.

A data-race in the unsynchronized fragment

⇔ index(a1)=index(a4) ∨ index(a2) = index(a3) ∨ index(a2) = index(a4)

⇔ t1 + j1 = t2 ∨ t1 = t2 + j2 ∨ t1 = t2

t ​ =1 0 t ​ =2 1 j ​ =1 1 M > 1

Memory Access Protocols  ⚯  Tiago Cogumbreiro 35 / 48



Sequentializing protocols (step 3)
Idea: represent the interleaving of any two threads (instead of all available threads)
(FSE'10)

Each variable is duplicated per thread (thread-local view)

Interpret loops as ∀-binders (FSE'10)

Key insight: Data-races are isolated on pairs of threads (not a transitive)

(FSE'10) Scalable SMT-Based Verification of GPU Kernel Functions.Guodong Li and Ganesh Gopalakrishnan.

Memory Access Protocols  ⚯  Tiago Cogumbreiro 36 / 48



Sequentializing protocols
Source syntax

Target syntax

Tracing

Memory Access Protocols  ⚯  Tiago Cogumbreiro 37 / 48



Sequentializing protocols
Sequencing

Results

Memory Access Protocols  ⚯  Tiago Cogumbreiro 38 / 48



How do we get to

unsychronized protocols?

39 / 48



Aligning protocols
(step 1)

40 / 48



Aligning protocols (step 1)
We define a notion of aligned protocols, where accesses do not "leak" across iterations

We show that all protocols can be aligned (modulo notion of well-formedness)

Intuition: unfold loop and rearrange accesses

Insight: protocols have no local state; ordering only matter wrt synch

➋

➌

➊ ➋ ➌ ➍

Memory Access Protocols  ⚯  Tiago Cogumbreiro 41 / 48



Aligning protocols

Source: well-formed protocols

Target: aligned protocols

Memory Access Protocols  ⚯  Tiago Cogumbreiro 42 / 48



Aligning protocols

Memory Access Protocols  ⚯  Tiago Cogumbreiro 43 / 48



Aligning protocols

Memory Access Protocols  ⚯  Tiago Cogumbreiro 44 / 48



Splitting protocols
(step 3)

45 / 48



Splitting protocols

➊ ➋ ➌ ➍

➌

➍

Memory Access Protocols  ⚯  Tiago Cogumbreiro 46 / 48



Splitting protocols
Syntax-oriented extraction of unsynchronized fragments

Compositional analysis (no data-races between fragments)

Synchronized loop variables can also be interpret as a forall-binder

However, the binder must be shared by both threads (ie, only one r variable shared by
both threads)

Memory Access Protocols  ⚯  Tiago Cogumbreiro 47 / 48



Conclusion

Behavioral types being used to enforce
data-race freedom

A compositional analysis, formally
proved

Large experimental evaluation (229
real-world + 258 synthetic = 487
kernels)

Used our tool to confirm data-races
found in the wild

Our approach is more scalable and more
precise (fewer false-positives) than
related work

Source code and proofs available in a
free software license

Future directions

Proving alarms are true (rather than
proving false alarms)

Resource analysis of memory access
protocols

Incompleteness logic to showcase
performance bottlenecks

https://gitlab.com/umb-svl/faial
https://gitlab.com/umb-svl/faial-coq

Memory Access Protocols  ⚯  Tiago Cogumbreiro 48 / 48

https://gitlab.com/umb-svl/faial
https://gitlab.com/umb-svl/faial-coq

